
A Hierarchical Level of Detail Optimization

Algorithm for Frame Rate Control

Ashton E. W. Mason and Edwin H. Blake

Abstract

We present a new hierarchical level of detail optimization algorithm that is

predictive so is suitable for frame rate control. Our algorithm is general and

makes few assumptions about application. We base our approach on the previ-

ously demonstrated equivalence of level of detail optimization to the Multiple

Choice Knapsack Problem (MCKP). However we show that this equivalence is

broken by the unified simple representations for groups of related objects that are

typical of hierarchical scene descriptions, and that the equivalence holds instead

for a hierarchical generalization of the MCKP. Our level of detail algorithm is

an incremental version of a greedy approximation algorithm for this problem, de-

signed to exploit frame-to-frame coherence. We prove that the greedy algorithm’s

solution is guaranteed at least half-optimal for a useful subproblem in which more

expensive selections always provide diminishing returns. Furthermore we argue

that its typical solution is much better than half-optimal.

1



1 Introduction

While traditional culling and level of detail techniques serve to reduce the rendering

complexity of typical frames, they serve inadvertantly to increase the inconsistency of

frame rates by making rendering complexity dependent on the variable visible scene

complexity rather than on the constant complexity of the entire scene. In order to

guarantee constant frame rates the dependency of rendering complexity on scene com-

plexity must be completely eliminated. Predictive level of detail techniques offer one

way to accomplish this. They regulate frames rates by basing level of detail selection

on rough estimates of the rendering cost of available object representations as well as

of their perceptual effect. Their aim is to select, for each frame, the set of available

representations that provide the best overall perceptual benefit without exceeding the

available frame rendering time.

We propose a level of detail optimization algorithm that is essentially a generaliza-

tion of the well known predictive approach of Funkhouser and Séquin to hierarchical

scene descriptions, and corrects problems we outline with that algorithm and previ-

ous attempts at its extension. We show that the Funkhouser-Séquin algorithm is not

guaranteed at least half-optimal as they claim, due to a flaw in their level of detail

selection criterion. In addition we note that their algorithm is not immediately appli-

cable to hierarchical scene descriptions, due to its foundation on the Multiple Choice

Knapsack Problem (MCKP). A key contribution of this paper is the demonstration

that the provision of unified simple representations for groups of related objects that

2



is fundamental to many hierarchical level of detail techniques makes the level of de-

tail optimization problem equivalent instead to a new hierarchical generalization of

the MCKP. Our algorithm is effectively an incremental version of a greedy algorithm

for this Hierarchical MCKP, whose solution we prove is guaranteed half-optimal in

the worst case for a useful subproblem in which more expensive selections provide

increased perceptual benefit but with diminishing returns.

We begin in Section 2 with a review of related work. In Section 3 we formally

define a generalized hierarchical level of detail description. In Section 4 we introduce

the Hierarchical MCKP. In Section 5 we present our greedy algorithm for that problem.

In Section 6 we prove the worst case half-optimality of the greedy algorithm’s solution,

for a restricted subproblem. In Section 7 we present our predictive hierarchical level of

detail optimization algorithm. Finally in Section 8 we offer some concluding remarks.

2 Background

Funkhouser and Séquin [3] were first to note that level of detail - the provision of

object representations at multiple resolutions - could be used not only to reduce the

complexity of rendering but also to limit it predictively by choosing to render only as

much detail as may be rendered in the available time. They note the equivalence of

this constrained optimization problem to the NP-complete Multiple Choice Knapsack

Problem, in which a cost-limited subset of a set of candidate items must be selected

so as to maximize their total profit, with the restriction that the items are partitioned

3



into disjoint types (or candidate subsets) and exactly one item must be selected of each

type [6]:

Given a set N of n candidate items, a partition into disjoint candidate subsets

N1; : : : ; Nr of the item set N and a knapsack, with

pj = profit of item j (1)

wj = cost of item j (2)

c = capacity of the knapsack (3)

maximize

z =
nX
j=1

pjxj (4)

subject to

nX
j=1

wjxj � c (5)

X
j2Nk

xj = 1 8 k 2 f1; : : : ; rg (6)

xj 2 f0; 1g 8 j 2 N (7)

N = f1; : : : ; ng =
r[

k=1

Nk (8)

assuming

Nh \Nk = ; 8 h 6= k: (9)

With regard to rendering, the items are object representations, each with their own

perceptual benefit and rendering cost (as predicted by simple heuristics). Exactly one

representation must be selected for each scene object. Funkhouser and Séquin describe

4



a greedy approximation algorithm for MCKP1 which considers the candidate items in

descending order of value (profit / cost), selecting each item if it can be afforded. If the

item selected belongs to the same candidate subset (or type) as an item that has already

been selected, only the item with greater profit is retained. The Funkhouser-Séquin

level of detail algorithm is an incremental version of this algorithm that is equivalent

as long as more expensive selections provide diminishing returns.

Funkhouser and Séquin claim that their algorithm’s solution is at least half-optimal

(in terms of total profit) in the worst case. Consider however the MCKP instance in

which there are 7 items with profits p = (10; 900; 910; 10; 600; 10; 400) and costs w =

(1; 100; 700; 1; 500; 1; 400), partitioned into r = 3 candidate subsets. Candidate subset

N1 contains items 1, 2 and 3, N2 contains items 4 and 5, and N3 contain items 6 and

7. The capacity of the knapsack is c = 1000. The solution reached by the algorithm

in this instance is x = (0; 0; 1; 1; 0; 1; 0) with total profit z = 930, while the optimal

solution is x = (0; 1; 0; 0; 1; 0; 1), with total profit z = 1900. This counterexample

may be made arbitrarily bad by manipulating the profits of the items.

Being founded on a greedy algorithm for MCKP, the Funkhouser-Séquin algo-

rithm is fundamentally incapable as it stands of catering for unified representations for

groups of related objects. Single unified representations for multiple objects would

correspond to single items of multiple type, which are not permitted in MCKP. This is
1Actually they refer to the Continuous Multiple Choice Knapsack Problem, a relaxation of MCKP

in which items may be fractionally selected [6] [4]. However their algorithm never selects fractional

portions of items for rendering and is therefore really an algorithm for MCKP.

5



a significant limitation, since hierarchically unified representations are an elegant and

natural means to provide consistent efficient low detail renderings for groups of related

objects (See for example [1] [5] and [9]).

Maciel and Shirley [5] present a hierarchical level of detail optimization algorithm

that is an extension of the predictive approach of Funkhouser and Séquin to hierarchies

with unified impostor group object representations. However their algorithm employs

a different greedy strategy (based loosely on profit rather than value) and has no guar-

antees at all of solution quality. Furthermore it is non-incremental and must perform a

complete greedy optimization for every frame.

Our level of detail algorithm represents both a correction of the shortcomings of

the Funkhouser and Séquin algorithm and a robust generalization of their predictive

incremental approach to hierarchical scene descriptions. Our algorithm has much in

common with that of ROAM [?], used for frame rate control in the rendering of height-

fields described by Binary Triangle Trees. Like ROAM, we make use of two priority

queues to prioritize scene elements for level of detail incrementation and decrementa-

tion. Our approach differs in that we ...

This paper bares similarities to [7], in which we described an earlier algorithm for

the same problem. In this paper we correct an error in that algorithm’s detail selection

heuristic2 that caused its solution to be less than half-optimal in the worst case. In

Section 6 we provide a formal proof of the correctness of our new algorithm.
2A hierarchical version of that afflicting the Funkhouser-Séquin algorithm, which we discovered

only after [7] had gone to print.

6



3 Hierarchical Level of Detail Description

Here we define a generalized hierarchical level of detail scene description which will

serve as the basis for the following sections. An object is defined recursively as the

union of other smaller objects which are its parts, or children. The hierarchy of objects

forms a part-whole decomposition of the scene from a single scene object at the root to

the smallest, indivisable components at the leaves (see Figure 1). Each leaf object has

a number of associated impostors, or drawable representations.3 In addition group (or

non-leaf) objects may also each be provided with their own set of impostors. An im-

postor of a group object serves as a unified drawable representation of all the parts of

the group. In this way each object has as its drawable representations not only its own

explicitly associated impostors at various levels of detail but also the multiple more de-

tailed combinations of the impostors of its descendents. Together these representations

constitute the available levels of detail of that object:

Definition 1 Level of Detail

A level of detail s of an object O is a set of impostors fi1; i2; i3; : : : ; ing such that

exactly one of the impostors on the path from O to each of the leaves of the subtree

rooted at O is an element of s.

For example the valid levels of detail of the scene object in Figure 1 are f1g,

f2g, f4; 5; 3g, f4; 6; 3g, f4; 5; 7; 8g and f4; 6; 7; 8g. Each constitutes a complete and

unambiguous representation of the scene.

3We use impostor in its most general sense, referring to any drawable object representation [5].

7



Figure 1: A simple level of detail hierarchy. Objects are represented by cir-

cles and their impostors by triangles. The impostors of each object are shown in

order of increasing detail from left to right. Impostors are labeled arbitrarily for

convenience.

Definition 2 Replacement Set

The replacement set of an impostor belonging to an object O is the immediately

higher detail impostor of O, if one exists, or the set of the lowest detail impostors of

the nearest impostor-bearing descendents of O, otherwise.

In Figure 1, the replacement sets of impostors 1, 2, 3 and 5 are f2g, f4; 5; 3g, f7; 8g

and f6g respectively. Impostors 4, 6, 7 and 8 have no replacement sets.

An incrementation of a level of detail s of an object O is the replacement of some

impostor i 2 s by its replacement set r to produce another level of detail s0. Conversely

a decrementation of s is the replacement of some complete replacement set r � s by

the impostor whose replacement set is r. The levels of detail of each object are partially

ordered by the following relation:

Definition 3 Partial Ordering of Levels of Detail

8



Two levels of detail s and t of an object O are related by s � t if there exist

levels of detail l1; l2; l3; : : : ; ln such that l1 = s, ln = t, and li+1 is the result of some

incrementation of li for all i 2 f1; 2; 3; : : : ; n� 1g.

We say that s is a lower level of detail than t and that t is a higher level of detail

than s. If s � t and s 6= t then we say that s is a strictly lower level of detail of O than

t, denoted s < t. For example f2g < f4; 5; 3g < f4; 6; 3g in Figure 1. The lowest

and highest levels of detail of an object are those such that there exist no other levels

of detail that are lower and higher, respectively.

Definition 4 Ancestor Replacement Sets

A replacement set r is an ancestor replacement set of another replacement set q

if there exists a (possibly trivial) list of replacement sets r1; r2; r3; : : : ; rn such that

r1 = r, rn = q, and ri+1 is the replacement set of some impostor in ri for i 2

f1; 2; 3; : : : ; n� 1g.

Conversely r is a descendent replacement set of q if q is an ancestor replacement

set of r. In Figure 1, f3; 4; 5g is a descendent replacement set of f2g and an ancestor

replacement set of f6g and f7; 8g.

4 Hierarchical Multiple Choice Knapsack Problem

In this section we provide a transformation of the hierarchical level of detail description

defined in Section 3 to an equivalent constrained non-hierarchical one. This transfor-

9



mation allows us to rigourously interpret the meaning of unified group object repre-

sentations in terms of the MCKP paradigm.

In the hierarchical level of detail scene description defined in Section 3, each group

(or non-leaf) object is the union of its parts, or children. Therefore impostors of group

objects are effectively unified representations of all of the parts of those group objects.

By our definition they function as lower detail representations of those parts than any

of the impostors that are explicitly associated with the parts themselves. We may

therefore redraw the hierarchy equivalently by transforming group object impostors

into shared low-detail impostors of their children, as long as we note that the shared

impostors are constrained and must be selected in unison for all of the parts, if at all.

By repeatedly transforming group object impostors to inherited shared impostors

of the children of those group objects, we can create an equivalent constrained non-

hierarchical level of detail description, as shown in Figure 2. Each object in this

new description corresponds to a leaf object in the original hierarchy and has as its

impostors all those that lay on the path from the root object to itself, in top-down order.

Notice for example that impostor 1 in Figure 2, being an impostor of the scene object,

is implicitly a representation of every leaf object. The hierarchical set of constraints

preserves the original structure by requiring that each set of inherited impostors is

always selected in unison. A valid level of detail of such a constrained description is

a set of impostors such that all constraints are satisfied and exactly one impostor is

selected for every object.

We can now show that the hierarchical level of detail optimization problem is

10



Figure 2: Transformation of a level of detail hierarchy to an equivalent con-

strained non-hierarchical description. Constraints, shown as links, indicate that

the inherited shared impostors must be selected in unison. The shared impostors

are labelled with letters to distinguish them from one another.

equivalent to a hierarchical generalization of the Multiple Choice Knapsack Problem.

In this Hierarchical MCKP the candidate subsets are not disjoint; some candidate items

are shared between multiple candidate subsets. Each candidate subset corresponds to

an object in the constrained non-hierarchical description, and its candidate items cor-

respond to the impostors of the object.

The definition of the Hierarchical MCKP is identical to that of the MCKP given

in Section 2 except that line (9) is replaced with a stipulation that the root item o 2

Nk; k = 1; : : : ; r has a replacement set Ro. The replacement set of an item i is a

set of items ri = fi1; i2; i3; : : : ; izig such that for every candidate subset Nk of which

i is an element, there exists exactly one item j 2 ri that is an element of Nk; all

replacement sets are mutually disjoint; and each item j 2 ri may or may not have a

single replacement set.

11



5 Greedy Algorithm for the Hierarchical MCKP

Our greedy algorithm for the Hierarchical MCKP begins with the least expensive fea-

sible solution (corresponding to the lowest level of detail) and iteratively improves

on this solution by considering currently selected items for replacement with their re-

placement sets. In each iteration the item considered is that whose replacement set r

has greatest relative value RV(r). The relative value of the replacement set r of an

impostor i is defined as the ratio of the difference in perceptual benefit and the dif-

ference in rendering cost between r and i, ie. RV(r) =
(
P

j2r
benefitj)�benefiti

(
P

j2r
costj)�costi . The

incrementation is performed if it can be afforded without exceeding the size of the

knapsack, otherwise the greedy selection terminates.4 After termination, the solution

reached is compared against the lowest cost feasible solution containing the critical

replacement set, which is the first replacement set that could not be afforded. If this

solution has greater profit than the greedy selection and has total cost less than or equal

to the size of the knapsack then it is selected instead.

6 Proof of Half-Optimality

In this section we prove the half-optimality of the greedy algorithm described in Sec-

tion 5. The algorithm’s solution is at least half-optimal (in terms of total profit) for

the subproblem of the Hierarchical MCKP in which replacement sets are always more
4The algorithm can be trivially improved by continuing to consider any other replacements that

might be afforded instead, as long as the items they replace have been selected.

12



expensive and more profitable than the items they replace, but with diminishing returns

for later replacements.5 Formally, we assume that if Rj is the replacement set of j then

pj �
X
i2Rj

pi; wj �
X
i2Rj

wi (10)

and if Rk is the replacement set of k 2 Rj then RV(Rk) � RV(Rj), ie.

(
P

i2Rk
pi)� pk

(
P

i2Rk
wi)� wk

�
(
P

i2Rj
pi)� pj

(
P

i2Rj
wi)� wj

: (11)

Given an instance of the Hierarchical MCKP, let the total profit of the optimal

solution to this instance be z. Let G be the set of items in the solution reached by the

greedy algorithm, and let zg =
P

i2G pi be the profit of this greedy solution.

Then

z = zg +
X
j2A

((
X
i2Rj

pi)� pj)�
X
j2B

((
X
i2Rj

pi)� pj) (12)

where j is the item whose replacement set is Rj , j 2 A implies that Rj would be

selected in the process of selecting the optimal solution but was not selected in the

process of selecting G (ie. the algorithm has “underselected” by not selecting Rj), and

j 2 B implies that Rj was selected in the process of selecting G but would not be

selected in the selection of the optimal solution (ie. the algorithm has “overselected”

by ever selecting Rj).

First up we consider the replacement sets Rj such that j 2 A. When the critical

replacement set Rs was considered (and rejected) the set of currently selected items
5This ensures that a replacement set with low relative value can never prevent a descendent with

higher relative value from being considered.

13



was exactly G. Therefore the critical replacement set Rs was considered as the re-

placement for some item s 2 G, and was favoured over some replacement set Rv that

is the replacement set of some item v 2 G and is an ancestor replacement set of Rj .

This implies that RV(Rv) � RV(Rs):

(
P

i2Rv
pi)� pv

(
P

i2Rv
wi)� wv

�
(
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

:

From (11), RV(Rj) � RV(Rv). Therefore RV(Rj) � RV(Rs), ie.

(
P

i2Rj
pi)� pj

(
P

i2Rj
wi)� wj

�
(
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

8 j 2 A: (13)

Next we consider the replacement sets Rj such that j 2 B. When the critical

replacement set Rs was considered for selection (and rejected) the set of currently

selected items was exactly G. There must therefore exist a list of replacement sets

J1; J2; J3; : : : ; Jz such that J1 = Rj , Jz � G, and Ji is the replacement set of some

item ji in Ji�1 for all of i = 2; 3; 4; : : : ; z.

Likewise there must also exist a list of replacement setsM1;M2;M3; : : : ;My where

M1 is the replacement set of some item in the cheapest feasible solution, My = Rs and

Mi is the replacement set of some item mi 2Mi�1 for all of i = 2; 3; 4; : : : ; y.

Then we know that the algorithm at some stage replaced some item jz in Jz�1 with

Jz instead of replacing some item mu in Mu�1 with Mu, for some u 2 f2; 3; 4; : : : ; yg,

since Jz was selected and My (ie. Rs) was not. Therefore RV(Jz) � RV(Mu):

(
P

i2Jz pi)� pjz
(
P

i2Jz wi)� wjz

�
(
P

i2Mu
pi)� pmu

(
P

i2Mu
wi)� wmu

:

14



From (11), RV(Mu) � RV(My), ie. RV(Mu) � RV(Rs). Therefore RV(Jz) �

RV(Rs):

(
P

i2Jz pi)� pjz
(
P

i2Jz wi)� wjz

�
(
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

:

From (11) again, RV(J1) � RV(Jz), ie. RV(Rj) � RV(Jz). Therefore RV(Rj) �

RV(Rs):

(
P

i2Rj
pi)� pj

(
P

i2Rj
wi)� wj

�
(
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

8 j 2 B: (14)

Therefore, from (12), (13) and (14) we have

z � zg +

2
4X
j2A

((
X
i2Rj

wi)� wj)�
X
j2B

((
X
i2Rj

wi)� wj)

3
5 (
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

: (15)

Let c = c �
P

i2Gwi be the space left in the knapsack after the selection of G,

immediately before the rejection of the critical replacement set Rs. From the fact that

Rs was rejected we know the difference in cost between Rs and s is greater than c:

c < (
X
i2Rs

wi)� ws: (16)

Furthermore we know that the total difference in cost between the optimal solution

and the greedy solution G must be less than or equal to c:

X
j2A

((
X
i2Rj

wi)� wj)�
X
j2B

((
X
i2Rj

wi)� wj) � c:

Therefore, from (16),

X
j2A

((
X
i2Rj

wi)� wj)�
X
j2B

((
X
i2Rj

wi)� wj) � (
X
i2Rs

wi)� ws (17)

15



and so, from (15) and (17),

z � zg + ((
X
i2Rs

wi)� ws)
(
P

i2Rs
pi)� ps

(
P

i2Rs
wi)� ws

(18)

� zg + (
X
i2Rs

pi)� ps (19)

� zg +
X
i2Rs

pi: (20)

Recall that the greedy algorithm compares the total profit of the final greedy so-

lution (which is greater than or equal to zg) to the total profit zs of the cheapest so-

lution containing the critical item, and keeps whichever solution is better. That is,

the algorithm’s solution has profit zh � max(zg; zs). Clearly zs �
P

i2Rs
pi, so

zh � max(zg;
P

i2Rs
pi). Therefore, from (20),

zh �
1

2
z

and the profit of the algorithm’s solution is guaranteed to be at least half the profit of

the optimal solution.

7 Hierarchical Level of Detail Optimization Algorithm

Our level of detail optimization algorithm is an incremental version of the greedy algo-

rithm described in Section 5. Its advantage is that it exploits frame-to-frame coherence

by basing its initial solution on the solution found for the previous frame rather than

always performing a complete greedy optimization from scratch. The algorithm is ap-

plied once per frame and its input is the rendering cost limit for that frame and the

16



level of detail selected for the previous frame.6 Its output is a level of detail for the

scene object, the predicted rendering cost of which is guaranteed to be less than or

equal to the available rendering time. Upon termination of the algorithm we render the

impostors constituting the selected level of detail as the scene representation for that

frame.

Like the greedy algorithm, the incremental algorithm is iterative. However in each

iteration it both increments the selected level of detail (by replacing a selected impostor

by its replacement set) and then repeatedly decrements (by replacing a completely

selected replacement set by its associated impostor) while the total rendering cost of

the selected level of detail exceeds the rendering cost limit. The impostor selected for

incrementation in each iteration is that which can be afforded and whose replacement

set has greatest relative value. The replacement set replaced in each decrementation

step is that with lowest relative value. In this way the algorithm greedily adjusts its

solution, favouring the selection of replacement sets with high relative value and the

deselection of those with low relative value. The algorithm terminates when it finds

upon completing an iteration that the replacement set selected in the incrementation

step of that iteration was subsequently deselected in one of the decrementation steps.

Conveniently the greedy and incremental algorithms are equivalent as long as (10)

and (11) hold. Note that the algorithm as described does not consider the critical

replacement set solution (Section 5). The critical replacement set is that which is both

6Or in fact any valid level of detail, for example in the case of the first frame.

17



selected and deselected in the final iteration of the algorithm. However we feel that in

practice situations in which the critical replacement set contributes significantly to the

optimal solution are unlikely to arise.

Note that the maximum error of the greedy algorithm is bounded by the difference

in profit between the critical replacement set and the item it replaces (19). Therefore

as the granularity of the candidate items with respect to the knapsack becomes finer,

the maximum error of the algorithm tends to zero. In practical level of detail appli-

cations the performance of both algorithms can be expected to be much better than

half-optimal.7

Note also that diminishing returns (as required by (11)) are the norm in level of de-

tail rendering rather than the exception. Successive increases in the complexity of an

object representation typically result in progressively smaller improvements in visual

quality. Therefore the algorithm can be expected to perform well in practical applica-

tions. Care must nevertheless be taken to ensure that the benefit and cost prediction

heuristics, being simple ad hoc approximations, do not violate (10) and (11).

The worst case time complexity of both algorithms is O(n log n) in the number

of impostors. However the average case complexity of the incremental algorithm de-

pends heavily on frame-to-frame coherence, and our experimental results suggest it

is typically closer to O(n) [8]. Pathalogical situations are those in which successive

solutions are strongly dissimilar, for example frames with large changes in viewing

7A similar observation is made for other Knapsack Problem heuristics in [2].

18



direction. High frame rates can help to prevent this. Nevertheless the execution time

of the algorithm itself is irregular and may occasionally consume a significant portion

of the frame time, leaving a shortened portion for actual rendering. These problems

can be effectively circumvented by truncating the execution of the algorithm when a

set allocated optimization time is up. The nature of the algorithm is such that all of its

intermediatery states are feasible solutions. This approach results in brief deterioations

of image quality which is quickly regained during times of greater coherence, and can

result in extremely regular frame rates.

8 Conclusion

We have presented a level of detail optimization algorithm that is a robust hierarchical

generalization of the constrained optimization approach of Funkhouser and Séquin

to allow unified representations for groups of related objects. This saves rendering

complexity while maintaining consistency and conforms to the natural hierarchical

description of typical scenes. Our algorithm is predictive and so is suitable for active

frame rate control. Its complexity is O(n log n), and moreover it exploits coherence

by basing its initial solution on the solution from the previous frame. The algorithm

is essentially a greedy approximation algorithm for a new hierarchical generalization

of the Multiple Choice Knapsack Problem. We proved that its solution is always at

least half-optimal for a subproblem of the Hierarchical MCKP in which more detailed

renderings provide improved image quality with diminishing returns.

19



References

[1] B. L. Chamberlain, T. DeRose, D. Lischinski, D. Salesin, and J. Snyder. Fast ren-

dering of complex environments using a spatial hierarchy. In Graphics Interface

’96, 1996.

[2] M. L. Fisher. Worst-case analysis of heuristic algorithms. Management Science,

26(1):1–17, January 1980.

[3] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for interactive

frame rates during visualization of complex virtual environments. In Computer

Graphics Proceedings Annual Conference Series, volume 27, pages 247–254.

ACM SIGGRAPH, August 1993.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[5] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using

textured clusters. In 1995 Symposium on Interactive 3D Graphics, pages 95–102,

April 1995.

[6] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-

mentations. John Wiley and Sons Ltd., 1990.

[7] A. E. W. Mason and E. H. Blake. Automatic hierarchical level of detail opti-

mization in computer animation. In D. Fellner and L. Szirmay-Kalos, editors,

20



Computer Graphics Forum, proceedings of Eurographics ’97, volume 16, pages

191–199. Eurographics, Blackwell Publishers, 1997.

[8] S. Nirenstein, S. Winberg, A. Mason, and E. Blake. Hierarchical level of detail

optimization for rendering of radiosity scenes. Technical Report CS99-02-00, De-

partment of Computer Science, University of Cape Town, 1999.

[9] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hierarchical

image caching for accelerated walkthroughs of complex environments. In SIG-

GRAPH’96, Computer Graphics Proceedings, Annual Conference Series, pages

75–82. ACM SIGGRAPH, August 1996.

21


