
PREDICTIVE HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF SCIENCE

AT THE UNIVERSITY OF CAPE TOWN

IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Ashton E. W. Mason

July 1999

Supervised by

Edwin H. Blake

c
�

Copyright 1999

by

Ashton E. W. Mason

Abstract

In this thesis we address level of detail optimization, the problem of automatically selecting object

detail levels in an interactive visualization. A good selection mechanism should select levels that

are appropriate to the viewing situation and the limited time available for rendering. Our principle

contribution is the extension of a previous predictive approach to cater for hierarchical scene de-

scriptions in which multiple shared representations are provided for groups of objects. This results

in savings in rendering and optimization costs and supports the hierarchical nature of typical scenes.

We present the first rigorous characterization of the predictive hierarchical level of detail optimiza-

tion problem, and show its equivalence to a new hierarchical generalization of the Multiple Choice

Knapsack Problem. This allows us to identify and correct problems with previous approaches.

We present a series of new mathematically proven algorithms in the development of an im-

proved predictive hierarchical level of detail optimization algorithm, including new algorithms for

the Hierarchical and conventional Multiple Choice Knapsack Problems. Our level of detail algo-

rithm is predictive, guaranteeing that the predicted rendering cost of its selected levels of detail are

always lower than the available frame rendering time. It is hierarchical, allowing the use of shared

group object representations. It is incremental, exploiting coherence between successive optimal

solutions for increased efficiency. Lastly it is mathematically correct and provides guaranteed levels

of predicted perceptual quality. Our algorithm is a significant contribution to the elimination of lag

in interactive visualization.

We introduce a new formalism for the investigation and analysis of the hierarchical level of

detail problem, the level of detail graph. Using them we prove the equivalence of our algorithms,

and show how this proof can be adapted to prove the unproven equivalence of previous algorithms.

We present the results of a perceptual experiment demonstrating the effectiveness of the use of

shared object representations and an implementation demonstrating the practical feasibility of our

level of detail optimization algorithm. This represents the first application of hierarchical level of

detail optimization to the rendering of scenes generated with hierarchical radiosity.

iii

Acknowledgments

I am grateful to my supervisor Dr. Edwin Blake for his support throughout my degree. His guidance

and direction, as well as countless debates and discussions, were vital to my research. In addition

he was responsible for several key ideas including the use of the metric that I refer to as “relative

value”.

In addition I am indebted to several people for their kind help with areas of this work. Shaun

Nirenstein and Simon Winberg performed the experimental work that is described in Chapter 9. I am

grateful to them for their input as well as their dedicated and inspired work. Dr. Silvano Martello,

Dr. Ulrich Pferschy, Dr. Sven Krumke and Dr. Theo Swart all provided valuable assistance with

my work on the Multiple Choice Knapsack Problem. Dr. Tanja van Rij and Dr. Fons Kuijk were

instrumental in arranging a working visit to the CWI in Amsterdam which proved to be the turning

point of my research. The Institute for Perception Research (IPO) in Eindhoven provided useful in-

formation on perceptual experiments. My thanks go to the Foundation for Research Development of

South Africa (now the National Research Foundation) for their financial support during my studies.

I wish to thank my parents for their love and support. I dedicate this work to them. Lastly

I would like to thank my friends and fellow students for many helpful discussions and many fine

games of BZFlag.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Aims . 3

1.2 Overview . 4

2 Background 7

2.1 Introduction to Level of Detail . 8

2.2 Level of Detail Optimization . 10

2.3 Previous Level of Detail Optimization Strategies 15

2.4 Hierarchical Level of Detail Descriptions . 21

2.5 Knapsack Problems . 27

2.5.1 Binary Knapsack Problem . 28

2.5.2 Multiple Choice Knapsack Problem . 29

2.5.3 Algorithms for 0-1 KP . 31

2.5.4 Algorithms for MCKP . 35

2.6 Non-Hierarchical Level of Detail Optimization 41

2.6.1 Funkhouser-Séquin Algorithm . 47

2.6.2 Horvitz-Lengyel Algorithm . 52

2.7 Hierarchical Level of Detail Optimization . 53

2.7.1 Maciel-Shirley Algorithm . 55

2.7.2 Belblidia et al Algorithm . 57

2.8 Summary . 58

v

3 Greedy Algorithm for the MCKP 60

3.1 Relative Value . 61

3.2 Convexity Assumption . 63

3.3 Simplified Algorithm . 65

3.4 Proof of Half-Optimality for the Simplified Algorithm 69

3.4.1 Overview of Proof . 69

3.4.2 Proof . 70

3.5 Full Algorithm . 73

3.6 Proof of Half-Optimality for the Full Algorithm 77

3.6.1 Proof . 78

3.7 Advantages and Limitations . 83

3.8 Comparison with Funkhouser-Séquin Algorithm 84

3.9 Incremental Version . 85

3.10 Summary . 87

4 Hierarchical Level of Detail Optimization 89

4.1 Hierarchical Level of Detail Description . 90

4.1.1 Levels of Detail . 91

4.1.2 Replacement Sets . 92

4.1.3 Incrementation and Decrementation . 92

4.1.4 Partial Ordering of Levels of Detail . 92

4.1.5 Covering of Replacement Sets . 94

4.1.6 Ancestor and Descendant Replacement Sets 94

4.2 Hierarchical Multiple Choice Knapsack Problem 95

4.3 Maciel-Shirley Algorithm Revisited . 98

4.4 Summary . 100

5 Level of Detail Graphs 101

5.1 Level of Detail Graphs . 102

5.2 Non-Hierarchical Level of Detail Descriptions . 102

5.3 Hierarchical Level of Detail Descriptions . 103

5.3.1 Single Constraint . 103

5.3.2 Multiple Constraints . 104

5.4 Summary . 106

vi

6 Greedy Algorithm for the Hierarchical MCKP 109

6.1 Hierarchical Relative Value . 110

6.2 Hierarchical Convexity Assumption . 110

6.3 Greedy Algorithm . 111

6.4 Proof of Half-Optimality . 115

6.4.1 Overview of Proof . 115

6.4.2 Proof . 116

6.5 Advantages and Limitations . 118

6.6 Incremental Version . 119

6.7 Summary . 120

7 Hierarchical Level of Detail Optimization Algorithm 121

7.1 Algorithm . 122

7.2 Equivalence of the Incremental and Non-Incremental Algorithms 125

7.2.1 Level of Detail Optimization as a Search Problem 125

7.2.2 Incrementation and Decrementation . 127

7.2.3 Actions of the Algorithm . 130

7.2.4 Proof for Funkhouser-Séquin Algorithm 132

7.3 Advantages and Limitations . 132

7.4 Summary . 135

8 Perceptual Experiment 137

8.1 Aims . 138

8.2 Methodology . 138

8.2.1 Approach . 139

8.2.2 Image Content . 139

8.2.3 Stimuli . 141

8.2.4 Subjects . 145

8.2.5 Experimental Conditions . 145

8.2.6 Evaluation . 146

8.2.7 Procedure . 146

8.2.8 Level of Detail Optimization Algorithms 148

8.3 Results and Discussion . 154

8.4 Conclusion . 156

vii

9 Radiosity Experiment 158

9.1 Aims . 159

9.2 Methodology . 160

9.2.1 Level of Detail for Hierarchical Radiosity 160

9.2.2 Scope . 163

9.2.3 Experimental System . 164

9.3 Results and Discussion . 168

9.3.1 Dependence of Optimization Times on Changes in Viewing Angle 168

9.3.2 Frequency of Turn Magnitudes . 170

9.3.3 Algorithm Execution Times . 170

9.3.4 Constancy of Frame Preparation Times 172

9.3.5 Truncation of Algorithm Execution . 173

9.3.6 Hierarchy Simplification . 175

9.3.7 Dependence of Frame Preparation Times on Scene Complexity 177

9.4 Conclusion . 178

10 Conclusion 181

Bibliography 184

viii

List of Tables

1 Actions of the incremental level of detail algorithm 130

2 Rendering cost limits . 141

3 Parameters . 142

4 Image sequence pairs . 145

5 Categorical grading scale . 146

6 Cylinder object levels of detail for the hierarchical case 150

7 Cylinder object levels of detail for the non-hierarchical case 151

8 Voting indices for initial choice evaluation . 155

9 Voting indices for considered choice evaluation 155

10 Test workstation specifications . 166

ix

List of Figures

1 Levels of detail . 9

2 The level of detail paradigm . 10

3 Why level of detail optimization is worthwhile . 11

4 A simple hierarchical level of detail description 22

5 Hierarchical spatial decomposition in the form of an octree 24

6 The Binary Knapsack Problem (0-1 KP) . 29

7 The Multiple Choice Knapsack Problem (MCKP) 29

8 Greedy approximation algorithm for 0-1 KP . 32

9 Funkhouser and Séquin greedy algorithm . 37

10 Approximation of perceptual benefit function by multiple candidate items 43

11 Non-hierarchical level of detail description . 45

12 Implications of shared object representations . 46

13 Example of Gestalt perception . 47

14 The Funkhouser-Séquin incremental level of detail algorithm 49

15 Pathological example for the Maciel-Shirley algorithm 57

16 Relative value . 62

17 A candidate subset represented on a profit vs. cost graph 63

18 Selection within candidate subsets . 64

19 A convex candidate subset . 65

20 Simplified greedy algorithm for the MCKP . 66

21 Example execution of the simplified MCKP algorithm 68

22 Full greedy algorithm for the MCKP . 74

23 Example execution of the full MCKP algorithm 75

24 Triangle formed by ��� � ��� ��� and ��� ��� . 78

25 Triangle formed by
	 � �
 � and

	 � . 82

x

26 Simple level of detail hierarchy . 91

27 Examples of replacement sets . 93

28 Partial ordering on levels of detail . 93

29 Transformation of a group object impostor . 95

30 Transformation of a simple level of detail hierarchy 96

31 Hierarchical Multiple Choice Knapsack Problem 97

32 Level of detail graphs of non-hierarchical descriptions 103

33 Effects of a single constraint . 104

34 Constraint algorithm . 105

35 Comparison of the effects of two single constraints 106

36 Level of detail graph generation algorithm . 107

37 Level of detail graph of a hierarchical level of detail description 108

38 The hierarchical convexity assumption . 111

39 Greedy algorithm for the Hierarchical MCKP . 112

40 Critical replacement set solution algorithm . 114

41 The incremental hierarchical level of detail optimization algorithm 123

42 Level of detail optimization as a search problem 127

43 Partitioning of states . 129

44 Summarized state diagram of the incremental algorithm 131

45 Scene used in the perceptual experiment . 140

46 First frame of image sequence 7 . 143

47 First frames of image sequences 1 and 2 . 143

48 First frames of image sequences 3 and 4 . 144

49 First frames of image sequences 5 and 6 . 144

50 Structure of an assessment trial . 147

51 Hierarchical level of detail description . 149

52 Non-hierarchical level of detail description . 149

53 Cylinder impostors . 150

54 Adaptive patch subdivision in hierarchical radiosity 161

55 Sample output of the experimental system . 162

56 The T-vertex problem . 163

57 An example of the T-vertex problem . 164

58 Screenshot of the experimental system . 165

xi

59 Variation of local detail with viewing distance . 167

60 Dependence of optimization times on turn magnitude 169

61 Frequency of turn magnitudes . 170

62 Optimization algorithm execution times . 171

63 Constancy of frame preparation times . 174

64 Frame rates after truncation of optimization times 175

65 Optimization times after hierarchy simplification 176

66 Loss of flexibility due to hierarchy simplification 177

67 Visual effects of the hierarchy simplification transform 178

68 Dependence of frame preparation times on scene complexity 179

xii

Chapter 1

Introduction

“There are a number of challenges that still have to be met before any of these [3D

virtual interface] techniques are used routinely in industry. One that I can talk about

briefly is time-critical computing, which the networking community calls quality of

service. Instead of having algorithms that compute perfectly and take however long

they require, we want algorithms that yield a usable result within a given time limit

and produce higher-quality results if given more time. This will enable us to schedule

the number of frames that we are able to generate and avoid motion sickness. Such

time-critical computing requires a new way of looking at algorithms”

–Andries van Dam, 1996.

Virtual reality and 3D visualization systems suffer chronically from lag, the delay between the

expected perception of events by the user and their actual perception. Lag is annoying to the user

and is associated with motion sickness, deterioration of immersiveness and degradation of user

performance. The major source of lag is the complexity of the rendering process, exacerbated by

the vast size of typical models, leading to inconsistent and excessive frame rendering times. Many

techniques have been proposed to reduce lag, but no software algorithm or advance in rendering

hardware has yet succeeded in eliminating it.

In this dissertation we report on work that promises to eliminate a major cause of lag entirely

by actively regulating the complexity of the rendered scene model. This constitutes a time-critical

approach to rendering in which the preservation of consistent and reasonable frame rates is valued

above “realism” and spatial image quality. That is not to say that we disregard image quality in

1

2 CHAPTER 1. INTRODUCTION

favour of increased speed — rather we seek to control the rendering process actively and intelli-

gently to ensure that the best possible visual perception is achieved without sacrificing consistently

adequate frame rates. We believe that the elimination of lag due to excessive rendering times and the

regulation of frame rates on which it depends requires a fundamentally different approach to render-

ing in which the constraints on frame rendering time are explicitly encoded and religiously adhered

to, rather than being left to good fortune and the unpredicted whims of the rendering system.

The time-critical approach to rendering embodied by this research has received some attention

in the past. However we feel it has been widely neglected until very recently and even now holds

nowhere near the important position it deserves. In this dissertation we show that all of the best

attempts to investigate it formally, though certainly inspirational, have been flawed by a lack of

mathematical rigour that hampers the usefulness of their ideas. By basing our approach more firmly

on a sound theoretical foundation, we propose replacement algorithms and new techniques that cor-

rect previous problems and elegantly combine two of the most important ideas in contemporary

computer graphics: hierarchical scene descriptions and predictive level of detail optimization. We

draw on previous work that shows the advantages of predictive level of detail optimization tech-

niques and shared drawable representations for hierarchical groups of scene objects. We present

a new classification of existing level of detail optimization strategies in terms of whether they are

predictive and whether they support hierarchical scene descriptions. This classification shows that

few predictive strategies have been proposed and, of those, only two have been hierarchical. Our

work serves to address this disparity.

We present a formal and general definition of a hierarchical level of detail scene description:

a hierarchical scene description that is characterized by the provision of shared representations for

groups of related objects. From this general definition we derive rigorous hierarchical versions of

intuitive concepts such as levels of detail and the operations and relations associated with them. We

distinguish for the first time between the level of detail optimization problems for hierarchical and

non-hierarchical scene descriptions. This distinction is driven by the demonstration that the most

promising of the predictive level of detail optimization techniques proposed so far is inherently non-

hierarchical and does not allow shared representations for groups of scene objects. By considering

the implications of shared object representations and clearly outlining their meaning in terms of

non-hierarchical scene descriptions, we derive the first formal description of the hierarchical level

of detail optimization problem. This allows a rigorous re-evaluation of previous predictive level of

detail optimization algorithms and clearly identifies the sources of their limitations.

We develop a new representational tool for the analysis and investigation of the hierarchical

1.1. AIMS 3

level of detail optimization problem. These level of detail graphs are graphical representations of

the state spaces generated by hierarchical level of detail descriptions. We use them to recast level of

detail optimization as a search problem and, in so doing, prove the equivalence of several level of

detail algorithms.

Based on our formal investigation of the hierarchical level of detail optimization problem and

analysis of previous approaches we formulate an improved hierarchical predictive level of detail

optimization algorithm. This algorithm is truly hierarchical and allows the use of hierarchical scene

descriptions with shared representations for groups of objects. Because of its predictive nature

it guarantees constant frame rendering times by ensuring that the predicted rendering cost of the

selected scene representation is always lower than the available rendering time. Furthermore it ac-

tively optimizes the perceptual benefit of the selected representation and produces guaranteed levels

of predicted perceptual quality. By virtue of this we correct problems with previous algorithms

that made their solutions arbitrarily bad in the worst case. Lastly our algorithm is incremental and

so exploits frame-to-frame coherence for improved efficiency by basing its initial solution on the

approximate solution found for the previous frame.

Our approach is founded in theory. We prove the correctness and equivalence of our algorithms

and develop, where appropriate, formal definitions of concepts introduced. This firm basis in theory

allows us to develop more effective techniques. We measure the practical usefulness of our theoreti-

cally developed ideas using experimental implementations in working systems. Our first experiment

introduces the use of perceptual evaluation, the subjective assessment of image sequences by non-

expert human users, for establishing a firm connection between the theory and the real world. The

second experiment describes the implementation of our predictive hierarchical level of detail opti-

mization algorithm in an actual interactive realtime visualization system. This system allows the

exploration of radiosity-generated scene models through the realtime predictive level of detail opti-

mization of thousands of scene objects, and constitutes the first application of hierarchical level of

detail optimization to the dynamic view-dependent adaptive rendering of scene models generated

using hierarchical radiosity methods.

1.1 Aims

We investigate the implications of hierarchical level of detail descriptions for predictive level of

detail optimization. Our aims are:

1. The formal investigation of the predictive hierarchical level of detail optimization problem.

4 CHAPTER 1. INTRODUCTION

2. The development of formal tools and techniques to aid in this investigation.

3. The development of improved predictive hierarchical level of detail optimization algorithms.

4. The testing of the effectiveness and efficiency of these algorithms.

1.2 Overview

Chapter 2 We begin in Chapter 2 with a review of related work. In that chapter we distinguish

between the hierarchical and non-hierarchical level of detail optimization problems, where the re-

spective problems are characterized by the classes of level of detail models that they allow. Previous

level of detail optimization schemes are discussed in light of this distinction. We reflect on an ear-

lier result demonstrating the equivalence of the level of detail optimization problem to the Multiple

Choice Knapsack Problem (MCKP), and show that this equivalence holds only for non-hierarchical

level of detail optimization. We argue that the equivalence assumes the use of a non-hierarchical

level of detail description in which no shared representations are provided for groups of objects.

The key difference between the problems arises from the fact that in the case of hierarchical scene

descriptions with shared representations for groups of objects it is possible to select single shared

representations for multiple objects. This difference is the central theme of our research. Finally

we review in detail the predictive level of detail optimization algorithms proposed previously and

outline their shortcomings. In particular we show that none of the previously proposed algorithms

provide guaranteed levels of perceptual quality, in spite of claims to that effect.

Chapter 3 In Chapter 3 we present a greedy algorithm for the MCKP that we prove is half-

optimal or better for all instances of the problem. This algorithm is an improvement over the similar

algorithm presented by Funkhouser and Séquin, whose solution we show is not guaranteed to be

half-optimal as they claim. Our algorithm makes use of a metric, relative value, that embodies a

useful insight into the nature of the MCKP. Since our aim is the development of level of detail opti-

mization algorithms, we consider the use of this first greedy algorithm in level of detail optimization

and find that its most significant limitation in this regard is that it is not incremental and performs

a complete greedy optimization every time it is applied. With this in mind we also present a sec-

ond, simplified MCKP greedy algorithm that is capable of being made incremental. This second

algorithm is the result of a simplifying assumption that more expensive selections always provide

diminishing returns. We show that the simplified algorithm’s solution is at least half-optimal for all

1.2. OVERVIEW 5

instances of the MCKP in which this assumption is true.

Chapter 4 In Chapter 4 we present a formal definition of a general hierarchical level of detail

description (or scene model) in which multiple shared representations may be provided for groups

of related objects. Along with this we provide formal definitions of concepts such as the partial or-

dering of levels of detail that such descriptions provide and the incrementation and decrementation

operations between them. We define a hierarchical generalization of the MCKP, the Hierarchical

Multiple Choice Knapsack Problem, to which the hierarchical level of detail optimization problem

is shown to be equivalent. This equivalence is demonstrated by means of an intermediatory rep-

resentation, the constrained non-hierarchical level of detail description, in which the hierarchical

constraints on level of detail selections implicit in the hierarchical level of detail description are

represented explicitly by constraints on the selection of object representations.

Chapter 5 In Chapter 5 we introduce a novel representation, the level of detail graph, of the

state spaces generated by hierarchical level of detail descriptions. The level of detail graph is a

representational tool that allows the formal, visual and semantic analysis of hierarchical level of

detail optimization algorithms and the investigation of the hierarchical level of detail optimization

problem.

Chapter 6 In Chapter 6 we present a new greedy approximation algorithm for the Hierarchical

MCKP. This algorithm is a natural hierarchical extension of our simplified greedy algorithm for the

MCKP. Just as that algorithm is half-optimal for a subproblem of the MCKP, so we prove that this

algorithm is half-optimal for a subproblem of the Hierarchical MCKP in which more complex se-

lections provide diminishing returns. The extension of the non-hierarchical algorithm makes use of

a hierarchical extension of the previously proposed relative value metric to cater for the constraints

on selection that are implicit in hierarchical level of detail descriptions.

Chapter 7 Chapter 7 presents a predictive hierarchical level of detail optimization algorithm that

is an equivalent incremental version of the greedy approximation algorithm for the Hierarchical

MCKP described in Chapter 6. This algorithm is designed to take advantage of frame-to-frame

coherence by accepting as an initial solution the approximate solution reached for the previous

frame. We prove the equivalence of the incremental and non-incremental algorithms using level of

detail graphs.

6 CHAPTER 1. INTRODUCTION

Chapter 8 In Chapter 8 we describe experimental research involving subjective perceptual evalu-

ation of animation sequences by volunteer users into the effectiveness of hierarchical level of detail

optimization and the use of hierarchical level of detail models. A contribution of this experiment is

the introduction of perceptual evaluation as a means of testing the effectiveness of graphics algo-

rithms.

Chapter 9 In Chapter 9 we present the results of a second experiment, consisting of the implemen-

tation and testing of our predictive incremental hierarchical level of detail optimization algorithm

in a practical system implemented by students under our supervision. This experiment represents

the first application, to our knowledge, of hierarchical level of detail optimization techniques to the

interactive realtime rendering of radiosity-generated scene descriptions to provide view-dependent

adaptive refinement at render-time. We show that by taking advantage of view-dependent infor-

mation such as the position and orientation of the viewer, as well as information won during the

radiosity computations, it is possible to reduce visible detail in visually unimportant areas of the

scene adaptively and dynamically so as to limit frame rendering times without impacting severely

on the perceptual benefit of the rendered frames.

Chapter 10 Finally in Chapter 10 we end this dissertation with some concluding remarks and an

evaluation of the key results with regard to the aims of the research stated in Section 1.1.

Chapter 2

Background

In this chapter we discuss the related previous work which forms the basis of our research, and in

so doing outline more clearly the problem we aim to address. In Section 2.1 we describe the level

of detail problem in general form and distinguish between level of detail modeling, optimization

and rendering. In Section 2.2 we describe a high level classification of level of detail optimization

strategies according to their aims and approaches, showing that the most promising strategies are

those that are predictive. In Section 2.3 we review previous level of detail optimization strategies

in terms of this classification, noting that relatively few are predictive. In Section 2.4 we discuss

the advantages of the use of hierarchical scene descriptions and review the extensive use of such

descriptions by previous schemes, noting that the number of predictive hierarchical schemes is sur-

prisingly small. In Section 2.5 we review the theory of several variations of the Knapsack Problem,

a well-known problem in Operations Research. In Section 2.6 we describe a useful equivalence

between level of detail optimization and the Multiple Choice Knapsack Problem noted previously

by Funkhouser and Séquin, and show that this equivalence is broken by the shared object represen-

tations that characterize hierarchical level of detail descriptions. We describe two non-hierarchical

predictive level of detail algorithms in some detail, outlining their limitations. Then in Section 2.7

we consider the hierarchical level of detail optimization problem and discuss in detail two hierarch-

ical predictive level of detail algorithms, outlining their limitations in turn. Finally we provide a

summary of the main points of the chapter in Section 2.8.

7

8 CHAPTER 2. BACKGROUND

2.1 Introduction to Level of Detail

The technique known as level of detail has developed as a means of managing the complexity of

rendering at render-time in interactive animation, visualization and virtual reality systems. One aim

of such graphics systems is the creation and perpetuation of what we shall refer to as user convic-

tion, the extent to which the user is “convinced” of the illusory reality or environment that is being

portrayed. Crucial to user conviction are visual quality and temporal quality. Visual and temporal

quality refer to the extent to which the frames (or images) produced by the system and their timing

contribute to user conviction. We refer to the temporal quality of the system as interactivity, since

the timing (or temporal quality) of the frames directly affects the degree to which the user is able

to interact effectively with the system. Because both the visual quality and timing of the frames are

dependent on the complexity of the rendering process, there is a continual tradeoff between visual

quality and interactivity. Any increase in visual quality may be derived at the expense of increased

rendering complexity and therefore decreased interactivity, and conversely any improvement in in-

teractivity may be achieved at the expense of decreased image quality. Practical experience and

experimental work such as that of Smets and Overbeeke [79] suggest that static resolution factors

such as spatial and colour resolution are significantly less important, relatively speaking, for the

performance of many interactive tasks than the regulation of a consistent and reasonable frame rate.

Therefore care must be taken to ensure that interactivity is not compromised in the quest for more

“realism”. Level of detail (LoD) techniques make the management of this tradeoff explicit and al-

low it to be performed dynamically at render-time, whereas previously it was generally hardcoded

by the designer of the system at design-time.

The common theme underlying all level of detail techniques is the provision of multiresolution

representations for scene objects: geometric representations or collections of representations from

which distinct drawable representations at a range of detail levels may be extracted. The multiple

drawable representations of a given object are referred to as the levels of detail or impostors [47] of

that object (Figure 1). The advantages of multiresolution representations were first pointed out by

Clark [16]. Essentially the provision of multiple drawable representations of differing complexities

allows the adaptive selection of more appropriate representations for objects in reaction to changing

context than is possible with a single fixed representation. This in turn allows the rendering system

to control the amount of detail rendered in each part of the scene intelligently and dynamically so

as to prevent the rendering of detail that is too fine to be displayed accurately, perceived usefully,

and rendered interactively.

2.1. INTRODUCTION TO LEVEL OF DETAIL 9

Figure 1: Levels of detail. Five representations of the same object (a sphere) at
different levels of detail. Each level of detail consists in this case of a different
number of planar polygons and has a different rendering cost and a different con-
tribution to the perception of the object as a sphere (and therefore to the perception
of the scene as a whole). A typical scene might consist of many different objects,
each of which may be provided with its own set of representations at various levels
of detail.

We distinguish between level of detail modeling, level of detail optimization and level of detail

rendering (see Figure 2). Our interest is focused almost exclusively on level of detail optimization.

Level of detail modeling, also known as multiresolution modeling, is the provision of multiple draw-

able object representations at various levels of detail. Level of detail optimization is the automatic

selection of the most appropriate level of detail for each scene object for rendering dynamically at

render-time. Finally level of detail rendering refers, in this sense, to the rendering of the levels of

detail extracted from the level of detail model and selected for rendering by level of detail opti-

mization. To be more precise, level of detail optimization is a process that acts as a filter between

the level of detail model and the rendering subsystem, filtering from all the possible representations

made available by the model only those that are appropriate for rendering in the current viewing

situation. Part of its job is to predict the needs of the user and to adjust its filtering accordingly.

In this dissertation our interest lies primarily in level of detail optimization and in the develop-

ment of automatic techniques by which it may be performed. We will not address level of detail-

specific rendering techniques at all, and our coverage of level of detail modeling will amount to

the definition of general-purpose abstract definitions of hierarchical and non-hierarchical level of

detail models, with little consideration of the practical techniques by which these models may be

implemented in reality. A vast amount of ongoing research has been conducted into the automatic

generation and storage of perceptually optimal multiresolution polygonal object representations.

Puppo and Scopigno [54] provide a useful survey of these techniques.

While level of detail optimization itself incurs some computational expense, decreasing slightly

the time available for actual rendering, this investment is worthwhile since it allows active control

over what is rendered. This intelligent management of rendering detail creates the illusion of a far

10 CHAPTER 2. BACKGROUND

renderingmodeling

level of detail
modeling

level of detail
optimization

level of detail
rendering

tr
ad

it
io

n
al

le
ve

l o
f

d
et

ai
l

Figure 2: The level of detail paradigm. Traditionally the rendering process
has been treated as being composed, broadly speaking, of two stages: modeling
and rendering. The foundations of the level of detail paradigm lie in level of de-
tail modeling, where a single fixed model is replaced by a collection of models of
varying complexity. These multiresolution models create a need for level of detail
optimization, in the form of automatic processes for selecting the particular levels
of detail to be rendered, and level of detail rendering, the extension of rendering
processes to deal with level of detail models. This thesis is concerned with level of
detail optimization.

more complex full-detail rendering, by adaptively allocating the rendering time that is available to

the detail that will most benefit the perception of the scene. This can, if used properly, create the

perception by the user of a constant detail level higher than the greatest constant detail level that

could have been rendered if no level of detail optimization were performed (see Figure 3).

2.2 Level of Detail Optimization

Level of detail has been used previously with the following three aims in mind:

1. The prevention of aliasing.

2. The reduction of rendering complexity.

3. The regulation of frame rates.

Aliasing is the misrepresentation of fine (high frequency) detail during the sampling and re-

construction process constituted by rendering [4]. It commonly results in the appearance of jagged

2.2. LEVEL OF DETAIL OPTIMIZATION 11

a

b

c

d

e

Figure 3: Why level of detail optimization is worthwhile. The diagram shows the
levels of detail selected for the eight objects of a hypothetical scene, in each of five
cases labeled (a) to (e). Levels of detail, or impostors, are represented by triangles,
with higher levels of detail being represented by darker triangles. Higher levels
of detail have better visual perception but are also more expensive. (a) shows a
possible selection with the maximum total rendering cost that can be afforded if no
level of detail optimization is performed. (b) shows a selection with the maximum
cost that can be afforded after some rendering time is allocated to level of detail
optimization. However since level of detail optimization is being performed it is
possible to intelligently select, for example, either (c) or (d), which have the same
total cost as (b). In each case more important objects are allocated higher levels of
detail. Due to the diminished perception of unimportant objects this can create the
perception by the user of a constant high level of detail of all objects as shown in
(e) with average perceptual benefit greater than that of (a).

lines, random noise and moire patterns in the rendered output, as fine detail is sampled too sparsely

and incorrectly reconstructed. By active control over what detail is rendered, it is possible to prevent

the rendering of detail that, when rendered, would project to detail too fine to be resolved accurately

on the target display. By removing (by means of culling, filtering, smoothing or simplification) any

object-space detail that would be reduced by perspective projection to screen-space detail smaller

than a pixel it is possible in theory to eliminate aliasing entirely. Furthermore by providing multiple

representations at a range of detail levels and selecting between them intelligently it is possible to

avoid the rendering of excessive detail (leading to aliasing) on the one hand and the rendering of

too little detail (leading to impairment of user conviction) on the other. This amounts to a filtering

of detail in object-space, and has historically been put to good use in adaptive and multiresolution

12 CHAPTER 2. BACKGROUND

texture mapping techniques such as mipmapping [27] [32] as well as in the adaptive rendering of

terrain in flight simulators [20]. The use of multiple levels of detail to regulate the display of visual

detail was suggested by Clark [16].

Whilst the origins of level of detail lie in perception, it is more commonly associated today with

rendering efficiency. A useful side-effect of the removal prior to rendering of detail that may not be

correctly displayed is a reduction in the wasted effort of rendering that detail. By adaptive control

over the rendering of detail it is possible to significantly reduce the complexity of the rendering

process, which is generally worthwhile even at the additional expense of the level of detail selection.

Heckbert and Garland provide a useful survey of such techniques [34]. Funkhouser and Séquin, in

their broad classification of level of detail approaches, refer to techniques that have this aim as

performing static detail elision [24]. Static techniques are those that perform detail elision (the

removal of unwanted detail prior to rendering) by means of unchanging static thresholds, typically

based on the distance of objects from the viewer or their projected size on the screen.

Funkhouser and Séquin were the first to note that level of detail techniques are capable not only

of reducing the complexity of the rendering process but also of limiting it. The aim of limiting the

rendering complexity is to guarantee consistent and reasonable frame rates. Experience of real-life

interactive visualization systems has shown that a consistent frame rate of at least ten frames per

second is essential to the perception by the user of a continuous environment, over and above the

need for spatial image quality [79] [63].

The increasing use of advanced clipping and visibility preprocessing techniques that remove

invisible model geometry such as those of Greene et al [30], Teller and Séquin [80] and Zhang et al

[88] [89] serves to make the complexity of rendering dependent on the changing complexity of the

visible portion of the scene, rather than on the constant complexity of the entire scene representation.

This tends to cause frame rates to vary dramatically as the user’s viewpoint changes to encompass

smaller and greater portions of the model. For example, the results reported by Zhang et al in [89]

show that although the use of hierarchical occlusion maps succeeds in culling between 50 and 100

percent of the scene model, its effect on frame rates is to make them more variable and irregular

than before.

Static level of detail techniques serve to reduce the dependency of the complexity of the render-

ing process on the complexity of the visible scene by de-emphasizing visually unimportant regions

and so reducing the region of the model on which rendering depends to the parts which are visually

important. Hence static level of detail techniques, while useful for decreasing the dependency of

rendering complexity on the complexity of the visible scene, do not remove it completely.

2.2. LEVEL OF DETAIL OPTIMIZATION 13

In this sense perceptually-based static detail elision can be seen as an extension of culling to

consider not only the coarse binary yes/no visibility of objects but also their fuzzy, perceptual visi-

bility. As well as sometimes being culled completely, objects are sometimes replaced with simpler

representations. Alternatively, clipping and culling may be seen as coarse specializations of the

more general concept of perceptually-based level of detail, in which objects are considered to be

either visible (and therefore important) or invisible. Indeed rather than competing with level of de-

tail techniques, advanced culling methods can be used to provide coarse visibility information as a

starting point for level of detail optimization.

As the complexity of the visible scene increases, so the complexity of data processed for ren-

dering and hence the complexity of the rendering process increases accordingly. Static techniques

are capable of recognizing that an object is only faintly perceived and adjusting its detail level ac-

cordingly, but fail to react to the overall complexity of the visible scene: the same level of detail

will be selected for an object in a certain viewing situation irrespective of whether seven such ob-

jects are visible or seven hundred. By reacting intelligently to changing perceptually visible scene

complexity it is possible to ensure that no more detail is rendered in total than may be rendered

in some arbitrary amount of available time. This removes completely the dependency of rendering

complexity on the complexity of any part of the scene and ensures (in theory) that the rendering

time of every frame is bounded by some fixed upper limit, so that consistent and reasonable frame

rates may be achieved. This aim requires more advanced level of detail optimization techniques than

those represented by static detail selection: naively assigning levels of detail based on the distances

of objects without any knowledge of global scene complexity is not enough.

This use of level of detail techniques to bound — rather than merely reduce — rendering times

has been referred to as load balancing by Reddy [60] and as time-critical rendering by Wloka [87],

Gossweiler [29] and van Dam [23]. Funkhouser and Séquin distinguish between two paradigms in

time-critical level of detail: adaptive detail elision and predictive detail elision. Adaptive techniques

are similar to static techniques, but adjust their detail selection thresholds dynamically according to

information garnered from the rendering of previous frames. For example level of detail selection

criteria may be made more conservative in response to measurements indicating that the rendering

times of preceding frames were excessive, and relaxed in response to measurements indicating that

all is well. Funkhouser and Séquin note that these techniques are prone to a tradeoff between rapid

reaction speed and stability, leading to overshoot (the over-reaction to sudden changes), oscillation

(the cyclic meandering backwards and forwards across the thresholds) and delayed reaction times

[24]. Moreover the very nature of reactive or adaptive techniques is fundamentally limiting: the best

14 CHAPTER 2. BACKGROUND

we can hope for is a slight delay in reacting to changes during which the boundaries of acceptable

frame generation times are exceeded.
�

These limitations tend to cause adaptive techniques to behave

poorly in the regulation of frame rates of complex interactive environments in which the complexity

of the visible scene is subject to frequent dramatic and unpredictable changes from one frame to the

next [24].

For this reason Funkhouser and Séquin suggest the use of predictive level of detail techniques

in which the complexity of rendering is limited by means of active prediction of the net effects of

the rendering of potential object representations on the total rendering time of each frame. This

approach seeks to select for each frame a subset of all possible drawable representations of all scene

objects such that their total contribution to user conviction is maximized, while limiting their total

rendering cost to some fixed maximum. By limiting the total predicted rendering cost of each frame,

it is possible in theory to ensure consistent and reasonable frame rates at the expense of some vari-

ation and reduction in spatial image quality. Predictive level of detail optimization is distinguished

from static optimization by the fact that it aims to limit rendering complexity completely rather

than merely reduce it, and from adaptive optimization by the fact that it takes active control over

rendering complexity rather than passively reacting to previous results. It explicitly predicts and

considers the rendering costs of potential representations of individual objects, rather than simply

adjusting coarse thresholds. The motivation for performing this level of detail selection dynamically

at render-time rather than as a preprocess or during the design of the system is that in an interac-

tive visualization system it is impossible to predict in advance the position and orientation of the

viewer’s point of view at any given time. Therefore the most interesting parts of the level of detail

problem are those that apply to interactive visualization systems.

The time-critical approach to rendering embodied by predictive level of detail optimization is

closely related to time-critical approaches in other fields. Andries van Dam for example draws

an analogy to the concept of guaranteed quality of service in networking [23]. Fussel, Read and

Silberschatz [56] note that the level of detail concept is general and argue for system wide multires-

olution — the representation of all data at various levels of detail to allow intelligent management

of processing loads. Since the proposal of predictive level of detail for rendering by Funkhouser and

Séquin, similar techniques have been applied with some success to the automatic regulation of the

accuracy of physical simulation [11], collision detection [38] and update rates of animated objects

[87], all with the aim of preserving interactivity at the expense of computational accuracy.

�

The use of multiple thresholds, known as hysteresis, improves the situation slightly by trading detection accuracy for
improved stability.

2.3. PREVIOUS LEVEL OF DETAIL OPTIMIZATION STRATEGIES 15

In this dissertation we focus exclusively on predictive level of detail optimization techniques,

in the belief that they promise greater success in guaranteeing uniform frame rates in interactive

visualization. We feel that static techniques are relatively well established and that the next hurdle

in level of detail research is the development of effective and efficient predictive level of detail

optimization algorithms. We define the (predictive) level of detail optimization problem as follows:

Definition 2.1 The level of detail optimization problem

The level of detail optimization problem is the selection of a scene representation for each frame

from all available scene representations such that the perceptual benefit of the selected representa-

tion is maximized while its total rendering time is limited to some fixed upper bound.

This definition is fairly general and makes no demands nor distinction concerning the form

that the scene object’s representations may take and how they may be rendered. We assume that

efficient level of detail modeling and rendering techniques exist — an assumption that is supported

by the large amount of research into multiresolution modeling [54]. We rely on the generality of

our approach to ensure that it applies to multiresolution modeling techniques used in practice.

2.3 Previous Level of Detail Optimization Strategies

In this section we review level of detail optimization schemes proposed previously by other re-

searchers, in light of the static, adaptive and predictive classification begun by Funkhouser and

Séquin.

The vast majority of previous approaches have focused primarily on level of detail modeling and

rendering rather than level of detail optimization, relying on static detail elision for their optimiza-

tion algorithms. The overwhelming popularity of static techniques is due in part to their simplicity

(both in terms of understanding and in terms of implementation) and in part to historical reasons:

Static level of detail techniques can be dated back to 1976 [16] whereas predictive methods were

first proposed in 1993 [24]. We suspect that while many researchers are aware of the traditional uses

of level of detail in preventing aliasing and reducing the complexity of rendering, relatively few are

aware of its potential use in ensuring consistent and reasonable frame rates. The distinction be-

tween reducing and limiting is subtle and there is a general acceptance of the repeatedly-reinforced

“fact” that the complexity of rendering is dependent on the complexity of the visible scene. This

perception has begun to change with the recent rise in popularity of image based rendering, which

16 CHAPTER 2. BACKGROUND

promises to deliver free visible scene complexity through the replacement of geometric complex-

ity with images. Image based rendering schemes have varied from replacing realtime rendering of

geometry entirely with clever warping of prerecorded imagery to the selective use of images (often

derived from renderings of previous frames) to serve as approximate impostor representations of

scene objects [2] [47] [55] [73] [75]. In the sense of the second usage, image based rendering can

be considered a subclass of level of detail based techniques. Both can be considered examples of

a general trend towards “faking it” [64] [10] by means of cunning and appropriate approximations

rather than brute force computation.

Static detail elision was first proposed by Clark [16]. Clark’s aim in proposing the use of multi-

ple levels of detail was perceptually motivated: to guarantee the selection of the most perceptually

appropriate level of detail for every object in every conceivable viewing situation. Clark’s insight

was that by providing multiple explicit representations for each scene object at design-time, it is

possible to choose between them at render-time so as to minimize the appearance of insufficiently

detailed representations while simultaneously limiting the needless rendering of detail that is too

small (due to perspective projection) to be clearly represented or perceived. The most appropriate

level of detail in any given situation, in this approach, is the most convincing representation that,

when rendered, does not resolve to detail too small to be displayed on the available display.

Because the ability to perceive detail decreases most obviously and predictably with distance

from the viewer, the common perception of level of detail among non-specialists has come to be

that level of detail selection implies selection by thresholds based on distance. Blake [10] took

the idea of perceptually-motivated user-centric rendering further, noting that perception of detail

depends also on dynamic factors such as the relative motion of objects with respect to the viewer,

and providing metrics that predict the most perceptually appropriate level of detail in any situa-

tion [9]. Reddy provides a similar perceptually-based framework for rendering [59] [61] [62] and,

like Blake, provides a perceptual framework by which the visual effects of rendered detail may be

quantitatively measured. We note that although some argument can be made for the existence of

perceptual effects that depend on the state of the global visible scene [47], these perceptually-based

schemes have assumed for simplicity that the perceptions of independent objects are independent.

Therefore perceptually-based level of detail optimization has traditionally been done on a strictly

object-by-object basis.

Many level of detail schemes have been proposed that make use of static level of detail opti-

mization in one form or another. Most have followed Clark’s lead and based their level of detail

selection on simple heuristics that approximate the projected size of objects on the display — either

2.3. PREVIOUS LEVEL OF DETAIL OPTIMIZATION STRATEGIES 17

by some combination of object-space size and distance or by a direct measure of projected screen-

space size, and often by considering the object’s bounding box rather than the object itself. Rubin

and Whitted [67] [68] and Chamberlain et al [14] propose schemes in which they aim to prevent

aliasing and to reduce rendering times by replacing scene geometry with low detail bounding box

representations according to the screen area that they occupy.

Beigbeder and Jahami [6] and Maciel and Shirley [47] propose the use of simple impostors such

as textured planes as reduced detail representations of groups of scene objects. The Maciel and

Shirley scheme is distinguished by the use of a predictive level of detail optimization algorithm,

which will be discussed in Section 2.7.1. Shade et al [75], Aliaga and Lastra [1] [3] as well as

Schaufler et al [73] [72] present related schemes in which cached images of previously rendered

objects are used as textured impostors to replace distant geometry. Shade et al use a perceptually-

based error metric that predicts the perceptual difference between the impostor and the full-detail

geometry to decide whether or not to use the impostor. Aliaga and Lastra are more concerned with

level of detail modeling than optimization, and don’t specify how the decision as to whether or not

to use an impostor may be made. In [1] and [3] they state that they are investigating how predic-

tive optimization schemes might be used to schedule impostor use automatically so as to guarantee

consistent frame rates. In [2] and [55] they describe the adaption of their textured impostor scheme

to the simplified representation of portals (doorways) between cells (rooms) in a densely occluded

environment such as a building. In the case of portal textures the selection of geometry for replace-

ment by impostors is dictated by the topology of the building and no attempt is made to place a

rigid bound on frame rates. For example the rooms constituting cells may be arbitrarily and non-

uniformly complex.

Schaufler and Sturzlinger [73] propose a hierarchical three-dimensional image cache similar to

that suggested by Shade et al, in which impostor textures are created for each of a hierarchy of nested

bounding boxes, and the impostors are substituted for the geometry contained in the bounding boxes

they represent if the texels of the impostor textures are smaller than pixels when projected to the

display. This constitutes static level of detail optimization based on screen-space area. Schaufler

also presents a scheme for the automatic creation of layered texture-based object impostors that lend

themselves well to common impostor warping operations [71] [72].

Erikson proposes two related hierarchical polygonal simplification strategies, one with Lue-

bke [45] and the other with Manocha [19]. These schemes are automatic and produce hierarchical

simplifications in that they are capable of merging distinct objects. They both operate by collaps-

ing polygon vertices within close visual proximity of each other, and the scheme of Erikson and

18 CHAPTER 2. BACKGROUND

Manocha allows the creation of HLODs (hierarchical levels of detail), which are shared impostors

for groups of objects. These schemes are primarily level of detail modeling strategies, and their

level of detail optimization amounts to static detail elision based on screen-space area. No attempt

is made to ensure bounded frame rendering times, and while the results presented in [19] show a

speedup of up to 10 times over conventional rendering, the speedup depends on the viewpoint of

the user and in the worst cases there is no speedup at all. Furthermore the situations when the algo-

rithm’s speedup is nonexistent are precisely those in which the conventional rendering takes longest,

so that the effect of static level of detail optimization in this case is to worsen the non-uniformity of

the frame rate rather than improve it.

Luebke and Erikson state in [45] that “the user selects the screen-space size threshold and may

adjust it during the course of a viewing session for interactive control over the degree of simplifica-

tion”. This need for user-based control in an effort to maintain reasonable frame rates is a symptom

of the lack of awareness of global state that characterizes static detail elision and is exactly what

predictive level of detail optimization promises to remove.

Sillion et al [78] propose algorithms for the automatic generation of three-dimensional geomet-

ric impostors of urban scenery (that is, buildings). They focus on the development of methods by

which the scene can be divided into sections that are then represented by simpler impostor repre-

sentations, and the automatic generation of these impostors. The selection of geometry for dynamic

replacement by impostors is based roughly on the distance of the cells (city blocks in this case)

from the viewer, and no attempt is made to limit explicitly the total complexity of the selected ren-

dering. As with the rooms of [2] and [55], the city blocks constituting cells may be arbitrarily and

non-uniformly complex. It is up to the designer to ensure that they are not.

The Open Inventor rendering library by Silicon Graphics provides limited support for level of

detail optimization, in the form of special-purpose SoLevelOfDetail scene-graph nodes that auto-

matically switch between multiple available representations based on screen-space area thresholds

provided by the user [52]. No facility is provided for more advanced level of detail optimiza-

tion techniques. VRML, being closely based on Inventor, has similar level of detail support [53]

[83]. Level of detail switching is based on the distance of objects from the camera, rather than on

their projected screen-space size. Predictive level of detail optimization is difficult or impossible in

VRML, due to the fact that it is purely a scene-description language.

In addition many techniques have been proposed for the automatic control of the level of detail

of artificial terrains [13] [17] [20] [33] [43] [44] (in flight simulators and military-style games, for

example). The vast majority of these have made use of some form of hierarchical decomposition

2.3. PREVIOUS LEVEL OF DETAIL OPTIMIZATION STRATEGIES 19

of the landscape data from which custom versions of the terrain may be dynamically extracted.

These custom versions are typically adaptively refined according to some error metric that predicts

the visual appropriateness of further refinements. These are invariably aimed at eliminating the

rendering of detail that, after perspective projection, is too small to be properly resolved. This

amounts to static selection based on screen-space area. According to Funkhouser and Séquin [24]

some have also attempted to limit frame rendering times adaptively, rather than merely reduce them,

by dynamically varying level of detail selection thresholds.

Reddy proposes the extension of level of detail optimization to take into account the portion

of the image falling on the fovea, or most sensitive area of the eye [58], and the relative motion

of objects with respect to the camera [57]. These ideas were suggested previously by Funkhouser

and Séquin [24] and Blake [10] respectively. The degradation of visual detail in the periphery of

head-mounted displays has been investigated experimentally by Watson et al [84] [85]. These ideas

constitute extensions of perceptually driven static level of detail, although they may also be usefully

incorporated into predictive level of detail optimization as suggested by Funkhouser and Séquin

[24].

Remarkably few researchers have proposed predictive level of detail optimization strategies,

since their inception by Funkhouser and Séquin in 1993. The algorithm proposed by Funkhouser

and Séquin will be described in detail in Section 2.6.1. The scheme proposed by Maciel and Shirley

[47] is an extension of the Funkhouser-Séquin predictive approach to allow the use of hierarchical

level of detail models with shared impostors for groups of objects, and will be described in Section

2.7.1. Belblidia et al [8] [7] present a predictive hierarchical level of detail optimization algorithm

that is similar to but simple than that of Maciel and Shirley. We discuss their approach in Section

2.7.2.

Aliaga et al describe the development of a system for rendering massive models; in their case

a model of a power station. Their system divides the scene model into a collection of distinct cells

and directly measures the complexity (in terms of sheer number of polygons) of each cell. It is at

least partially predictive in that it then predictively varies the level of the detail selection threshold

for each cell so as to limit the total measured complexity of the visible cells. They report that they

are able to walk through their 13 million polygon model at interactive frame rates, at the expense of

some image quality. Little or no attempt is made to maximize image quality by means of intelligent

selection of relative cell detail levels.

Schaufler [70] describes an extension of the scheme of Funkhouser and Séquin which makes

use of their level of detail optimization algorithm but combines it with an image caching scheme

20 CHAPTER 2. BACKGROUND

similar to those of Shade et al [75], Aliaga and Lastra [3], and Schaufler and Sturzlinger [73]. Sin-

gle complex distant objects are replaced with polygon impostors texture-mapped with dynamically

updated images of those objects. Since nothing in Funkhouser and Séquin’s original formulation

of the algorithm excludes the the use of simple texture mapped impostors rather than conventional

polygon-based “levels of detail” this constitutes a combination of the approach of Funkhouser and

Séquin with the single-polygon impostor regime, rather than an improvement of the optimization

algorithm itself. Indeed the original definition of impostor given by Maciel and Shirley [47] explic-

itly includes both conventional levels of detail and simpler but different styles of representation that

only resemble their associated objects visually:

An impostor is an entity that is faster to draw than the true object, but retains the

important visual characteristics of the true object. Traditional LODs are a particular

application of impostors.
�

Schaufler notes that the use of image-based impostors saves additional rendering time (over con-

ventional levels of detail) that the Funkhouser-Séquin algorithm, by its predictive nature, is able to

apportion intelligently to more important objects. This is of course true for the predictive algorithm

of Maciel and Shirley [47] as well, since they also make use of image-based impostors.

Horvitz and Lengyel [37] describe another combination of the predictive Funkhouser-Séquin

approach with image based rendering that forms part of the Microsoft Talisman rendering system

[82]. We describe their approach in more detail in Section 2.6.2.

A survey of contemporary virtual reality solutions (commercial and otherwise) by Reddy in

1995 showed that while roughly half of the systems reviewed supported a means of automatic static

level of detail switching (based on distance or screen-space size) only IRIS Performer [65] [76] by

Silicon Graphics Inc. supported “load balancing”, which Reddy defines as automatic modulation

of the levels of detail of all objects in an attempt to maintain a fixed frame rate [60]. Performer

provides traditional distance- or screen-area-based level of detail control. In order to provide frame

rate control it also supports adaptive modulation of the thresholds based on estimates of system

stress derived directly from measurements of rendering load (the percentage of the frame time used

up by rendering) for the previous frame. The switching thresholds and the modulation by stress

and load are individually customizable on an object-by-object basis, providing the ability to favour

higher levels of detail for semantically or perceptually important objects. The approach employed

�

We follow roughly this definition in this dissertation, using impostor to denote any useful representation of a scene
object of group of scene objects.

2.4. HIERARCHICAL LEVEL OF DETAIL DESCRIPTIONS 21

by Performer is a good example of adaptive detail elision as defined by Funkhouser and Séquin [24]

(Section 2.2). Rohlf and Helman [65] note that a predictive scheme would be more effective:

Stress is based on load, the fraction of frame time taken to render a frame, and increases

as load exceeds a user-specified threshold. The load for frame
�

is used in conjunction

with user-specified parameters to define the stress value for frame
�����

, thus defining

a feedback network. As discussed in [Funkhouser and Séquin [24]] this method works

reasonably well for relatively constant scene densities but suffers because the stress is

always a frame late and can exhibit oscillatory behaviour. As illustrated in Figure 9

[not shown], a hysteresis band can reduce stress oscillations but a more sophisticated

stress management technique such as that described in [Funkhouser and Séquin [24]]

has better characteristics.

OpenGL Optimizer, also by Silicon Graphics Inc., is described as featuring “contribution culling”,

allowing the developer of the visualization system to create one or more levels of detail by either

specifying a target polygon count or polygon count reduction percentage and then having Opti-

mizer’s built-in object simplifier build the new levels of detail. A separate pass regroups levels of

detail into level of detail nodes. During rendering the selection of the level of detail to render is

based on either the viewing distance or the projected area of the model onto the screen [77].

Silicon Graphics describe Optimizer as the first “anti-graphics” system, referring to its use of

level of detail techniques to actively eliminate geometry from the rendering process. While this

is perhaps an overstatement it does reflect the growing acceptance of the idea that the optimal

rendering is not necessarily that with the most visible detail.

In concluding this section we note that there is clearly a need for more research into predictive

level of detail optimization. Since its inception only a few researchers and practical systems have

attempted to use it. In the next section we describe one possible reason why this is so.

2.4 Hierarchical Level of Detail Descriptions

Level of detail optimization techniques have typically made use of hierarchical level of detail de-

scriptions, in which objects are grouped hierarchically and shared representations may be provided

for groups of objects (see Figure 4). The popularity of hierarchical scene descriptions is due in part

to their ability to represent the hierarchical relationships between the various parts of typical scenes,

and the fact that part-whole hierarchies (in which each object is the union of its children, or parts)

22 CHAPTER 2. BACKGROUND

naturally produce scene representations at varying levels of detail. For the sake of comparison we

speak also of non-hierarchical level of detail descriptions, which are characterized by the provi-

sion of multiple representations for objects but not of common shared representations for groups of

objects. A scene description might for example be hierarchical in structure (with objects grouped

recursively into group objects) but not provide any shared representations for the groups.

1 2

4 5

6 7

3

8 9 10

Figure 4: A simple hierarchical level of detail description. In this stylized draw-
ing objects are represented by circles and are connected to their children by down-
ward arcs. Each group (non-leaf) object is the union of its children. Impostors, or
drawable object representations, are represented by triangles below the objects they
represent, in order of increasing detail from left to right. The impostors of group
objects (impostors 1 through 5) are effectively shared representations for all of the
children of those group objects. For example impostor 5 is a suitable replacement
for impostors 9 and 10.

Funkhouser and Séquin claim in [24] that their level of detail optimization algorithm is suitable

for application to hierarchical scene descriptions. However we will show in Section 2.6 that this

does not extend to catering for shared group representations. This is such a significant limitation

that the algorithm of Funkhouser and Séquin cannot really be said to be useful for hierarchical level

of detail descriptions. Notably Schaufler presents two separate level of detail schemes, one of which

uses Funkhouser and Séquin’s predictive optimization algorithm but does not cater for shared group

object representations [70] while the other is hierarchical and caters for shared representations but

is not predictive and makes no attempt to use a Funkhouser-like scheme [73]. Similarly Horvitz

and Lengyel [37] use an approach that is very similar to Funkhouser and Séquin’s and is also non-

hierarchical with no mention of shared group representations. We discuss their scheme in Section

2.6.2.

2.4. HIERARCHICAL LEVEL OF DETAIL DESCRIPTIONS 23

Maciel and Shirley, as well as providing a predictive level of detail optimization algorithm, per-

mit the use of truly hierarchical level of detail scene descriptions in which shared representations

may be provided for groups of objects [47]. The hierarchical descriptions assumed by Maciel and

Shirley is identical in general form to that shown in Figure 4. While the predictive algorithm of

Maciel and Shirley is in some sense a hierarchical extension of Funkhouser and Séquin’s algorithm

it differs significantly from it, as we shall show in Section 2.7.1. Our research constitutes the inves-

tigation of ways in which predictive and hierarchical level of detail optimization may be combined

into a working whole, and is therefore an extension of the work of both Funkhouser and Séquin and

Maciel and Shirley.

Like Maciel and Shirley, Belblidia et al [8] allow hierarchical level of detail descriptions with

shared object representations. Their level of detail description is identical in form to that of Maciel

and Shirley.

Clark was the first to suggest the use of hierarchical level of detail scene descriptions, or hier-

archical multiresolution models in which the scene is described in terms of a nested hierarchical

decomposition of objects into subobjects or parts and multiple drawable representations may op-

tionally be provided for objects at any level of the hierarchy. Clark’s description takes the form of

a hierarchy of objects, each of which contains both pointers to other objects which are its children

and pointers to other possible representations (or impostors) of that object. Blake [9] assumes the

use of a similar structure in his formalization and extension of the perceptually-inspired paradigm

of Clark.

Rubin and Whitted [68] make use of an irregular part-whole hierarchical description in the form

of a hierarchy of nested arbitrarily oriented rectangular parellalepiped bounding boxes, with no

other drawable scene geometry. Only one associated drawable representation is explicitly provided

for each object in the hierarchy, however other implicit representations are available in the form of

the explicit representations of their ancestors and descendants. Note that each non-leaf bounding

box functions as a shared impostor for all of the bounding boxes it contains. A complete scene

representation may be produced by rendering any subtree of the scene description rooted at the root

object.

Chamberlain et al [14] present a similar scheme in which a part-whole hierarchical scene repre-

sentation is automatically generated around the native geometry of the available scene description

(Figure 5). They create a regular hierarchical spatial decomposition of the scene in the form of

an octree, such that the leaves of the octree contain only a limited maximum number of geometric

primitives. Each of the non-leaf nodes of the octree is essentially a group object, and has associated

24 CHAPTER 2. BACKGROUND

with it a single drawable representation, or impostor. These impostors are colour cubes whose sides

are coloured with the average colour of the geometry contained within that cube when viewed from

that side, calculated in a preprocessing step by means of orthographic renderings. This scheme dif-

fers from that of Rubin and Whitted primarily in that the hierarchical scene description is regular

and contains traditional geometry at the leaves as well as bounding boxes.

Figure 5: Hierarchical spatial decomposition in the form of an octree. An il-
lustration of the manner in which Chamberlain et al construct a regular hierarchical
spatial decomposition of the scene from an available geometric scene description
using an octree.

Marshall et al [48] describe another scheme that is similar to that of Chamberlain et al, but

uses a non-uniform recursive part-whole subdivision of the scene into tetrahedrons instead of cubes.

Like the cubes of Chamberlain, these tetrahedrons themselves serve as drawable impostors for their

contained geometry.

Wiley et al make use of an extended form of the BSP tree called a Multiresolution Binary Space

Partition (MBSP) Tree, in which multiple representations may be provided for each hierarchically

partitioned subspace and a distinct subtree is created for each representation [86]. This represents

the conversion of a part-whole hierarchical scene description (the BSP tree) to a hierarchical level

of detail description (the MBSP tree).

Shade et al [75] present a scheme that is similar in spirit to those of Chamberlain et al, Marshall

et al and Wiley et al, but makes use of caching of previously rendered images of scene geometry

rather than pre-computed impostors. They use a BSP tree to partition the scene hierarchically, and

associate with each node previously rendered images of the scene geometry represented at that

node. These previously rendered images are then textured onto billboard-style polygons placed

2.4. HIERARCHICAL LEVEL OF DETAIL DESCRIPTIONS 25

in the scene to function as impostors for their represented geometry. In this way impostors are

generated automatically and cached to improve efficiency by taking advantage of frame-to-frame

coherence.

The scheme presented by Schaufler and Sturzlinger [73] is closely related to that of Shade et

al. They employ a hierarchy of nested bounding boxes, and use textures representing the contents

of each bounding box as impostors. This idea also has much in common with that of Chamberlain

et al, and differs primarily in the use of an irregular bounding box hierarchy rather than a regular

octree and the use of cached textures as impostors rather than simple shaded polygons cubes.

Aliaga and Lastra [1] [3] are unusual in that, although they use cached texture-mapped impostors

like Shade et al, these impostors are not organized in a hierarchy. Their work is concerned more

with the low level technicalities of using single-polygon texture-mapped impostors (for example,

accounting for the visual errors introduced by parellax) than with level of detail optimization. While

hierarchical level of detail descriptions are certainly useful for level of detail modeling, much of their

benefit arises in level of detail optimization where their recursive nature and power of expression

allows efficient ways of dealing with the complexity of large scenes. Chamberlain et al’s use of an

octree for example allows them to easily select simple shared representations (cube impostors) for

large groups of related objects in one step.

The scheme proposed by Sillion et al [78] for the automatic generation of 3D geometric im-

postors of urban scenery can be considered to be essentially hierarchical. They partition the model

into cells corresponding loosely to city blocks, and create impostors that represent entire cells or

combinations of cells.

The ideas presented by Erikson and Manocha [19] and Luebke and Erikson [45] combine ele-

ments of traditional polygonal simplification (or multiresolution modeling) and hierarchical level of

detail descriptions. Of the two, Erikson and Manocha’s scene model is closer to a regular hierarch-

ical level of detail description in which objects are grouped recursively and dynamically generated

shared representations are provided for the groups. The scene model of Luebke and Erikson is not as

regular and consists of a vertex tree: a hierarchical listing of all the vertices in the scene, according

to proximity and without regard to object topology, that may be queried on a frame-by-frame basis

to provide custom scene representations in which no groups of distinct vertices are closer together

than a given screen-space threshold.

One disadvantage of this vertex tree structure from a level of detail modeling point of view

is that it discards useful information about the scene topology that might otherwise be used to

ensure that the collapsing of vertices resulted in visually meaningful simplifications of groups of

26 CHAPTER 2. BACKGROUND

objects. Secondly it loses the advantages of the use of display lists (in OpenGL, for example) that

fixed
�

levels of detail such as those assumed by Funkhouser and Séquin allow. In particular the

dynamic creation of custom impostors favours the use of current graphics hardware in immediate

mode rather than display list mode, since unique impostors are generated for every frame and there

is therefore little advantage to be gained from display lists. The use of immediate mode often causes

a reduction in speed by a factor between 2 and 3 [45]. On the other hand the dynamic polygon-level

simplification of geometry allows the system of Luebke and Erikson to provide view-dependent

simplifications of individual objects in which parts of large objects which are near to the viewer

are simplified less than parts that are further away. Hoppe [36] presents a related technique for

view-dependent adaptive refinement of mesh-based object representations.

Ultimately the distinction between “fixed” and “dynamic” impostors comes down to the level

of the geometry at which the objects one considers to be available for manipulation by level of

detail optimization are located. Luebke and Erikson regard individual polygons as available for

simplification and decimation, while more traditional approaches [16] [9] [24] have assumed that

all polygon-tweaking is performed as a pre-process in the generation of a relatively small number of

fixed drawable representations. Clearly the level of geometry which one regards as “objects” dictates

what can and can’t be done with the objects one chooses. The work we present here is inspired by

the orthodox view of scene-object-level impostors and so our discussion will be formulated with

this in mind. However our approach is general enough to be applied at any level of geometry and

in fact in Chapter 9 we present an experiment in which polygons are considered individually by our

level of detail optimization algorithm. But as Chapter 9 shows, our experience suggests that while

the perceptual benefits of optimizing individual polygons may be great, the performance benefits

of level of detail optimization may be lost in the overhead that this involves. As a general rule

we suggest that, for the purposes of efficiency, the cost of considering whether or not to render an

impostor should be significantly lower than the cost of simply rendering that impostor.

As we said in Section 2.2, the many techniques that have been proposed for the automatic

control of the level of detail of artificial terrains typically make use of some form of hierarchical de-

composition of the landscape data. Often this is in the form of a quadtree, or regular 2-dimensional

decomposition [20]. In the same way that the faces of the cubes in Chamberlain et al’s octree hi-

erarchy serve as impostors for the geometry contained in those cubes, so the faces of the quadtree

nodes serve as impostors for their contained geometry. In these systems 2-dimensional hierarchical
�

Fixed levels of detail are also sometimes called static levels of detail to distinguish them from the dynamic creation
of impostors at render-time that systems such as those of Luebke, Erikson and Manocha allow. We avoid this term,
preferring to use it to distinguish between static, adaptive and predictive level of detail optimization.

2.5. KNAPSACK PROBLEMS 27

level of detail descriptions are exploited for the same benefits as 3-dimensional ones: the automatic

generation of simplified impostor representations for groups of objects and the efficiency of being

able to consider entire groups of objects at the same time in level of detail optimization.

IRIS Performer [76] allows the use of hierarchically nested level of detail nodes in its scene de-

scription hierarchy. Using these nodes, multiple level of detail representations may be provided for

the parts of larger level of detail representations. This style of hierarchical level of detail description

is similar to but slightly more flexible than that of Maciel and Shirley [47], depicted earlier in Fig-

ure 4. In this thesis we assume a Maciel-Shirley style hierarchical description, which we describe

formally in Chapter 4.

All of the hierarchical level of detail schemes discussed above are non-predictive (See Section

2.2), with the notable exceptions of those of Maciel and Shirley [47] and Belblidia et al [8]. The

non-predictive schemes make no attempt to place a firm restriction on rendering complexity and

are designed to reduce, rather than bound, frame rendering times and (in some cases) to ensure

perceptually appropriate rendering. The complexity of the rendered geometry is still firmly linked

to the complexity of the visible portion of the scene, although in many instances the severity of

the dependency is reduced. As we noted in Section 2.3 the only predictive methods proposed so

far (to our knowledge) are the algorithm of Funkhouser and Séquin [24], the level of detail system

of Schaufler [70], which simply makes direct use of Funkhouser and Séquin’s algorithm, and the

hierarchical level of detail optimization schemes of Maciel and Shirley and Belblidia et al. This

suggests, firstly, that predictive level of detail optimization is a difficult problem in need of further

research (given that the schemes that exist have not completely solved it) and secondly that the

incorporation of hierarchical level of detail descriptions into predictive level of detail is still an open

problem. The only proposals which have addressed it, to our knowledge, are those of Maciel and

Shirley and Belblidia et al. Their schemes apply a predictive approach inspired by Funkhouser

and Séquin to hierarchical level of detail descriptions. We will investigate them in more depth in

Sections 2.7.1 and 2.7.2.

2.5 Knapsack Problems

In their seminal predictive level of detail optimization paper [24] Funkhouser and Séquin note that

the level of detail optimization problem is equivalent to the Multiple Choice Knapsack Problem. For

this reason we provide in this section a brief overview of the Knapsack Problem and several of its

variations. In addition we describe several approximation algorithms for these problems. We will

28 CHAPTER 2. BACKGROUND

return to the question of level of detail optimization in Section 2.6.

The Knapsack Problem describes a class of real-life optimization problems in which a limited

subset of a set of candidate items must be selected, such that their total profit is maximized while

their total cost is limited. Each item has a certain constant cost and profit. The problem draws its

name from an analogy to the filling of a knapsack of limited capacity with a selected number of

available items, each of which has a particular intrinsic worth (profit) and a certain size or weight

(cost). Many variations on the theme have been discussed at length in the field known as Operations

Research. We outline a few of them here.

2.5.1 Binary Knapsack Problem

The Binary Knapsack Problem (0-1 KP) is a specialization of the Knapsack Problem in which each

item may be selected exactly zero or one times (as opposed to the more general problems in which

multiple or fractional selections are permitted). 0-1 KP is shown conceptually in Figure 6 and may

be defined formally as follows:

Definition 2.2 The Binary Knapsack Problem

Given a set
�

of � candidate items and a knapsack, with

����� profit of item
	

����� cost of item
	

��� capacity of the knapsack

maximize 	
� ��� �� ��� ���
subject to ��� �� ��� �������

������� � � � ��� 	 � �
where �������� � � if item

	
is selected� otherwise

2.5. KNAPSACK PROBLEMS 29

selection

knapsackcandidate items

53

4

1
2

53

2

Figure 6: The Binary Knapsack Problem (0-1 KP). A variation of the Knapsack
Problem in which each candidate item may be selected only zero or one times.
Each item has a certain cost and profit, and the object is to select the subset of the
candidate items that maximizes the total profit and has total cost lower than the
capacity of the knapsack.

2.5.2 Multiple Choice Knapsack Problem

The Multiple Choice Knapsack Problem (MCKP) is a generalization of 0-1 KP in which the candi-

date items are partitioned into a collection of distinct candidate subsets (or types) and exactly one

item must be selected from each subset. It is shown conceptually in Figure 7. The MCKP will

serve as the basis of our work in later chapters, due to its usefulness as a model of the level of detail

optimization problem.

selection

candidate
subsets

knapsack

3

4

5

3
4

5

1

2

Figure 7: The Multiple Choice Knapsack Problem (MCKP). The problem con-
sists of a set of candidate items, partitioned into a collection of candidate subsets.
Each item has a certain constant cost and profit. The object is to select the subset
of the candidate items with greatest total profit, subject to the constraints that ex-
actly one item must be selected from each candidate subset and the total cost of the
selected items must be less than or equal to the capacity of the knapsack.

30 CHAPTER 2. BACKGROUND

Definition 2.3 The Multiple Choice Knapsack Problem

Given a set
�

of � candidate items, a partition into disjoint candidate subsets
� � � � � � � � � of

the item set
�

and a knapsack, with

����� profit of item
	

(1)����� cost of item
	

(2)��� capacity of the knapsack (3)

maximize 	
� ��� �� ��� ��� (4)

subject to ��� �� ��� ����� � (5)�� � ��� ����� � ��� ��� � � � � � � � � (6)

������� � � � ��� 	 � � (7)

� � � � � � � � � � � � �	
� �� � � (8)

assuming
��
� � � ��� ������ � � (9)

The Continuous Multiple Choice Knapsack Problem, C(MCKP), is a relaxation of MCKP in

which the candidate items may be fractionally selected (as opposed to either completely selected

or not selected at all, as in the MCKP). It is also known as the linear or continuous relaxation of

MCKP. Although C(MCKP) is not central to our work, we include it here because an understanding

of it is useful in later chapters.

Definition 2.4 The Continuous Multiple Choice Knapsack Problem

Given a set
�

of � candidate items, a partition into disjoint candidate subsets
� � � � � � � � � of

the item set
�

and a knapsack, with

����� profit of item
	

����� cost of item
	

��� capacity of the knapsack

2.5. KNAPSACK PROBLEMS 31

maximize 	
� ��� �� ��� ���
subject to ��� �� ��� ����� �

�� � ��� ����� � ��� ��� � � � � � � � �
� � ����� � � 	 � �

� � � � � � � � � � � � �	
� �� � �

assuming
��
� � � ��� ������ � �

Intuitively, instead of selecting exactly one item from each candidate subset exactly once, we

must select a total of exactly one item from each candidate subset, possibly composed of fractional

portions of several items.
�

2.5.3 Algorithms for 0-1 KP

The 0-1 KP is NP-complete, but may be solved in psuedo-polynomial time by dynamic program-

ming techniques. These are efficient for small problem instances. For larger instances branch-and-

bound algorithms are generally used [49]. Branch-and-bound techniques are examples of algorithms

that “while acknowledging the apparent inevitability of exponential time complexity, seek to obtain

as much improvement over straightforward exhaustive search as possible” [25]. They construct a

search tree of possible partial solutions and utilize powerful bounding methods to recognize partial

solutions that cannot possibly be extended to actual solutions, thereby eliminating entire branches

of the search in a single step. While their worst case performance approaches the complexity of an

exhaustive search, their average behaviour for typical problems is acceptable.

Aside from algorithms for the optimal solution of 0-1 KP, there are several approximation al-

gorithms that provide solutions of guaranteed near-optimal quality in exchange for polynomial time
�

Our definition of C(MCKP) is identical to that presented by Martello and Toth [49]. Garey and Johnson [25] use
Continuous Multiple Choice Knapsack to refer to a different NP-complete problem in which exactly one distinct item
must be selected from each subset, but this item may be fractionally selected with any selection value ranging from zero
to one. Note that this does not imply that a total of exactly one item is selected from each subset.

32 CHAPTER 2. BACKGROUND

complexity. Sahni [69] and others have described fully polynomial time approximation schemes for

0-1 KP that consist, essentially, of a series of approximation algorithms of increasing polynomial

time complexity that provide approximate solutions of any arbitrary non-optimal guaranteed quality.

A simple greedy approximation algorithm for 0-1 KP is shown in Figure 8. This algorithm

corresponds roughly to the least expensive algorithm in Sahni’s approximation scheme and is guar-

anteed to produce a solution with total profit at least half as good as the profit of the optimal solution

(we say that it is half-optimal). Its time complexity is
��� � log ��� [49].

input: an instance of the 0-1 KP (see Definition 2.2)
output: a half-optimal or better solution to the instance

// consider items in descending order of value,
// selecting each item if we can afford to

begin
set ��� � � � � � � �	� � �
order the set

�
of candidate items by descending value (� �
 � �)

for each candidate item
	�

if � � � � � � � � � ����� � then
set ��� � �

else
if � � � then

set ��� 	�
// consider the critical item solution

if � �� � then
if ���� � � � � � � � � then

set � � � � �
if
� � �� otherwise

�	� � �
end

Figure 8: Greedy approximation algorithm for 0-1 KP.

The greedy algorithm performs a greedy selection of the candidate items using a heuristic,

or simple guideline, that suggests which item should be selected next. The heuristic used is to

2.5. KNAPSACK PROBLEMS 33

consider at each stage the available item with the greatest value (profit / cost). Value provides a

measure of the “bank for the buck” provided by prospective representations. When each item is

considered it is placed in the knapsack if there is sufficient remaining space and discarded if there

is not. The rationale behind this heuristic is that whenever an item is considered we know that all

of the remaining unconsidered items have lower value and therefore would provide an inferior use

of the space taken up by it. Notice that because items may only be either completely selected or

completely unselected, this generally results in some wasted unused space. The greedy selection

therefore works as long as the selection of an item does not prevent the selection of a large later item

of lower value that, due to the specific sizes of the items, would have provided a more profitable

filling of the knapsack. To guard against this pathology the algorithm compares the profit of the

solution resulting from the greedy selection stage to the profit of the solution consisting of only the

critical item, which is the first item to be discarded during greedy selection due to its cost being

greater than the remaining space in the knapsack. If the critical item solution has greater profit

the algorithm rejects the greedy solution and selects the critical item instead. This step resolves the

pathology and guarantees that the algorithm’s solution is at least half as good as the optimal solution

(in terms of total profit).

We present here a proof of the half-optimality of the 0-1 KP greedy algorithm, based in part

on ideas presented in [49]. We include it here only because in Chapters 3 and 6 we will extend

it to provide proofs of the half-optimality of our own algorithms. The basic approach underlying

the proof is that of relating the solution value of the optimal solution to that of the algorithm’s

approximate solution, producing an expression for the maximum error or difference between the

two. By considering the implications of the selection order of items we then reduce this maximum

error expression to terms involving only weights and the value of the critical item. We then formulate

another expression relating the weights of the maximum error equation to the weight of the critical

item and, substituting, show that the maximum error is bounded by the profit of the critical item.

Since the greedy algorithm also considers the solution consisting of only the critical item, we deduce

that the algorithm’s solution is at least half as good as the optimal one.

Theorem 2.1 The total profit of the 0-1 KP greedy algorithm’s solution is at least half as good as

the total profit of the optimal solution, for every instance of 0-1 KP.

Proof:

Assume that the candidate items have been ordered by descending value, such that� �� � � ������ � ��� 	 � � �

34 CHAPTER 2. BACKGROUND

Let
�

be the set of items selected by the greedy algorithm before the critical item � is considered.

Then since � is the first item to be rejected the total profit 	 � of the items in
�

is given by

	 � � �
� � � � � �

The profit 	 of the optimal solution is related to 	 � by

	�� 	 � � �
� � � � ��� �� � � � �

where � is the set of items that are in the optimal solution but not in
�

, and � is the set of items

that are in
�

but not in the optimal solution. Then since� �� � � ����� � � � �
and � �� � � ����� � �
� �
we know that � �� � � ����� � � � �
and � �� � � ����� � � � �
and so

	 � 	 � � �
� � � � � ����� � �� � � � � ����� (10)

� 	 � � 	
 �
� � � � ��� �� � � � � � ����� � (11)

Now we know that �
� � � � ��� �� � � � � � �

2.5. KNAPSACK PROBLEMS 35

where � is the space left in the knapsack after the selection of
�

and before the rejection of � , since� � � � � � � fit into the knapsack by definition.

Since � was rejected we know that � � � � . Hence�
� � � � ��� �� � � � � �����

and so, from (11),

	 � 	 � � ��� ����� (12)� 	 � � �� � (13)

Recall that the greedy algorithm compares the total profit of the final greedy solution (which

is greater than or equal to 	 �) to the profit �� of the critical item solution, and keeps whichever

solution is better. That is, the algorithm’s solution has profit 	
 � max
� 	 � � �� � . Therefore, from

(13)

	
 �
�

�
	

and the profit of the algorithm’s solution is guaranteed to be at least half the profit of the optimal

solution.

2.5.4 Algorithms for MCKP

The MCKP, like 0-1 KP, is NP-complete. However it too may be solved by branch-and-bound

algorithms and in psuedo-polynomial time by dynamic programming techniques [49]. Branch-and-

bound algorithms for MCKP are preceded by a reduction phase, in which items that are dominated

by other items (and therefore are not elements of an optimal solution) are removed. The complexity

of the reduction phase is
��� � log � � , where � is the cardinality (or size) of the largest candidate

subset [49]. Then at each stage of the branch-and-bound algorithm an instance of the Continuous

Multiple Choice Knapsack Problem, C(MCKP), is constructed and solved. Algorithms for the exact

solution of C(MCKP) are presented for example by Armstrong et al in [5] and by Dudzinski and

Walukiewicz in [18].

We however are particularly interested in approximation algorithms for MCKP, rather than op-

timal algorithms. There are several reasons for this. Most obviously, the approach taken by Funk-

houser and Séquin [24] is based on a greedy algorithm. More importantly, optimal algorithms are

invariably more expensive than approximation algorithms for the same problem. Since our chosen

36 CHAPTER 2. BACKGROUND

application is level of detail selection in computer graphics, where approximation of visual quality

in exchange for reasonable execution speeds is the norm, we do not require optimal solutions to

our NP-problems and are happy to settle for approximate solutions of guaranteed quality levels in

return for relatively efficient time complexities. This favouring of guaranteed execution speed over

completely accurate solutions is in keeping with our time-critical computing-style approach.

Lastly, and most importantly, the greedy approximation algorithms that we propose may be

made incremental, so that they accept as input an initial solution derived from the approximate

solution found for the previous problem instance. This allows us to exploit the coherence between

the problem instances presented by successive frames, in a manner that was originally proposed by

Funkhouser and Séquin [24].

Funkhouser and Séquin present a greedy algorithm for a variation of C(MCKP), which they use

as a basis for an incremental level of detail optimization algorithm (described in Section 2.6.1). In

effect they use this algorithm as an approximation algorithm for MCKP, since, as we note in Section

2.6, their level of detail optimization approach assumes distinct unitary object representations. The

greedy algorithm presented by Funkhouser and Séquin has a time complexity of
��� � log ��� . They

claim that it is half-optimal: that its solution is guaranteed to be at least half as good as the optimal

solution in terms of total profit. However we shall show that this is not the case.

The Funkhouser-Séquin algorithm is shown in Figure 9. Like the 0-1 KP algorithm presented

earlier, the algorithm operates by considering items for selection in descending order of value (profit

/ cost), selecting them if they can be afforded. When an item is considered that belongs to the same

candidate subset as an item already in the knapsack, only the item with greater profit is retained.

That is, if the new item has greater profit then it replaces the currently selected one. Otherwise it is

discarded. The thinking behind this is that the retained item, whichever it is, represents a better use

of the space it takes up than any of the unconsidered lower-valued items [24].

It is not clear for which problem the Funkhouser-Séquin greedy algorithm is intended to be

an approximation algorithm. Funkhouser and Séquin state that it is an approximation algorithm

for the “Continuous Multiple Choice Knapsack Problem”, and refer to two sources: Computers

and Intractability by Garey and Johnson [25] and a paper called The Multiple Choice Knapsack

Problem by Ibaraki et al [39]. However these two sources define the Continuous Multiple Choice

Knapsack Problem differently. In [25] it is defined as a relaxation of the Multiple Choice Knapsack

Problem in which exactly one distinct item must be selected from each subset, but this item may be

fractionally selected with any selection value ranging from zero to one. In [39] Ibaraki et al deal with

the continuous relaxation of MCKP which we (as well as Martello and Toth [49]) call C(MCKP),

2.5. KNAPSACK PROBLEMS 37

input: an instance of the MCKP (see Definition 2.3) or C(MCKP)
output: a solution to that instance

// consider items in decreasing order of value, selecting items if we
// can afford them and replacing items from the same candidate
// subset on higher profit

begin
set � � � � �	� � �
order the set

�
of candidate items by decreasing value (� �
 � �)

for each candidate item
	�

if there exists an item
�

such that ��� � � and
� � 	 � � � for some

�
then

if ��������� and � � � � � � � ��� ��� � ��� � � then
set ��� � � � ��� � �

else
if � � � � � � � � � ����� � then

set ��� � ��
end

Figure 9: The Funkhouser and Séquin greedy algorithm.

defined previously in Definition 2.4. These problems are significantly different, although both are

NP-complete. Finally, as we note in Section 2.6, Funkhouser and Séquin actually use their algorithm

as an approximation algorithm for the conventional MCKP. �
No matter which of these problems the Funkhouser-Séquin algorithm is intended for, it is flawed.

In the case of both MCKP and C(MCKP), the algorithm fails to guarantee that its solution is feasible:

that (a total of) exactly one item is selected from every candidate subset. Consider for example

what happens in the case where, after the candidate items are ordered by descending value, all of

the items from one candidate subset are considered only after the available knapsack capacity has

been completely spent. �
�
It is important not to be confused by the fact that the MCKP and even its “continuous” relaxation C(MCKP) are

often defined such that the profits and costs of each item are integer. This is a convenience and is assumed without loss of
generality. In practice the profits and costs can be any positive real numbers [49]. Consider for example that any instance
of MCKP represented with finite accuracy on a computer can be converted to an equivalent instance containing only
integral profits and costs by multiplying through by a constant factor. The word “continuous” in “continuous relaxation”
refers to the selection values � 	 , rather than the profits
 	 and costs ��	 .

In the case of the variation of the Continuous Multiple Choice Knapsack Problem defined by Garey and Johnson

38 CHAPTER 2. BACKGROUND

More importantly, Funkhouser and Séquin claim that their algorithm is guaranteed to produce

a solution with total profit that is at least half as good as the total profit of the optimal solution. It

is however possible to find two kinds of counterexample for this, each of which outlines a separate

problem. An example of the first type of counterexample, shown in Definition 2.5, is an instance of

the MCKP in which there are two candidate subsets (
� � and

� �), each of which contains only one

item.
� � contains item 1, and

� � contains item 2. Item 1 has profit � ��� � � � and cost � � � � and

item 2 has profit ����� � � � �
and cost � ��� � � � . The capacity of the knapsack is 100. The algorithm

selects item 1, while the optimal solution consists of item 2.

Definition 2.5 First counterexample for the Funkhouser-Séquin greedy algorithm

Consider the instance of the MCKP in which:

� � � � � � � � � � � �� � � � � � � � �
��� �

� � � � � �
� ��� � � �
��� � � �

The solution reached by the greedy algorithm for MCKP in this instance is

� � � � � � �
with a total profit 	 � � � � � , while the optimal solution is

� � � � � � �
with a total profit 	 � � � � �

. Therefore the solution reached by the Funkhouser-Séquin greedy

approximation algorithm in this instance is less than half as good as the optimal solution.

Note that this counterexample is effective for both MCKP and C(MCKP), since C(MCKP) is a

relaxation of MCKP. It may be made arbitrarily bad simply by changing the profits of the items. It

represents the pathological case in which the selection of an item prevents the selection of a later

item that in fact happens to provide a much better usage of that particular knapsack capacity. This

[25], this is still a feasible solution, since in their problem it is not required that exactly one item is selected in total from
each candidate subset.

2.5. KNAPSACK PROBLEMS 39

problem is inherent in the naive greedy approach and occurs in the similar greedy algorithm for the

0-1 KP (see Section 2.5.1). It may be corrected, as it is in the case of the 0-1 KP algorithm, by

simply comparing the result of the greedy selection against a solution containing the critical item,

which is the first item to be discarded due to insufficient remaining space in the knapsack, and taking

whichever is better.
�

However the Funkhouser and Séquin greedy algorithm also suffers from another intrinsic and

more serious limitation:

Definition 2.6 Second counterexample for the Funkhouser-Séquin greedy algorithm

Consider the instance of the MCKP in which:

� ��� � �� ��� � �
� � � � � � � � � �
� ��� � � � � �
�

� � � � � � ���� � � � �
The solution reached by the Funkhouser-Séquin greedy algorithm in this instance is

� � � � � � � � � � � � � � � � �
with a total profit 	 ��� � � � , while the optimal solution is

� � � � � � � � � � � � � � � � �
with a total profit 	 � � � � � . Therefore the solution reached by the algorithm in this instance is less

than half as good as the optimal solution.

Note that this counterexample, like the first, is valid for both the MCKP and its continuous

relaxation. Unlike the first, it cannot be corrected simply by comparing the greedy solution against

the critical item solution. The critical item in this instance is item 5, and its profit is 600. The

critical item solution, after augmentation with the lowest cost items from the other candidate subsets

to ensure feasibility, is
� � � � � � � � � � � � � � � , with a total profit of 620. This counterexample therefore

�
In order to construct a feasible critical item solution we might augment the critical item with the lowest cost items

from every other candidate subset.

40 CHAPTER 2. BACKGROUND

represents a pathology that does not afflict the greedy algorithm for the 0-1 KP, and is a result of the

additional constraint imposed on the MCKP and its relaxations that we may select at most one item

from each candidate subset.

Conceptually, the second counterexample represents the pathological case in which an item with

high profit and low cost is replaced by another from the same candidate subset with slightly higher

profit but much higher cost (and correspondingly much lower value). The large gain in total cost

incurred for the small gain in profit prevents the algorithm from selecting later items (including the

critical item) that, together with the replaced item, would have resulted in a much higher solution

value. The act of replacement is more risky than the act of simple selection since it implies the loss

of the replaced item, which may potentially provide a high profit for a low cost. By replacing we

may sacrifice a large gain in cost for a small gain in profit.

In this instance the erroneous replacement is the replacement of item 2 with item 3. Notice that

item 3 has slightly higher profit than item 2, but much greater cost. However the value 1.3 of item 3

is still higher than the value 1.2 of item 5. The optimal solution actually consists of the critical item

5 and the replaced item 2, together with item 7. Note however that the profit of the replacing item is

always greater than the profit of the replaced item (since the algorithm only replaces if the net profit

increases). Therefore the extra penalty incurred by replacements, of losing a possibly high valued

item in exchange for a lower valued item with higher profit, is only really a penalty if the increased

cost prevents more desirable later items from being selected. If later items are discarded due to

there being insufficient available space for their selection then by definition the critical item must

be one of them. In Chapter 3 we propose an approximation algorithm for the MCKP that accurately

predicts the effects of the replacement of items and so corrects the faults of the Funkhouser-Séquin

algorithm.

We note that other authors have proposed several correct approximation algorithms and approxi-

mation schemes for MCKP. Chandra et al [15] for example present a fully polynomial time approxi-

mation scheme. Their scheme contains an algorithm that is half-optimal and whose time complexity

is
��� � � log ��� , where � is the number of candidate subsets. Lawler [42] presents another approxi-

mation scheme, based on that of Ibarra and Kim [40]. Its complexity is
��� � log � � � �� � , where �

is an accuracy measure � � � � � such that the error of the approximation is bounded by a factor
� of the optimal solution. Gens and Levner [26] present an approximation algorithm based on ap-

proximate binary search whose solution is at least
�

�
as good as the optimal solution and whose time

complexity is
��� � log � � . While these approximation algorithms are efficient, they may not, as far

as we know, easily be made incremental. In Chapter 3 we present a greedy algorithm for MCKP

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 41

that forms the basis for the level of detail optimization algorithms that we describe in later chapters.

Our algorithm may readily be made incremental and has a time complexity of
��� � � � � � � � , where

� is the cardinality, or size, of the largest candidate subset. Although it is simple, we can find no

precedent for it in the literature.

2.6 Non-Hierarchical Level of Detail Optimization

In this thesis we distinguish between the non-hierarchical and hierarchical level of detail optimiza-

tion problems. These problems are the application of the predictive level of detail optimization prob-

lem defined in Section 2.2 to non-hierarchical and hierarchical level of detail descriptions, respec-

tively. Although this might not seem obvious, the two are fundamentally different and the particular

approach to solving the predictive level of detail optimization problem suggested by Funkhouser

and Séquin [24] is, as it stands, only applicable to the non-hierarchical problem. This has important

implications for the predictive hierarchical level of detail algorithm for Maciel and Shirley [47],

which is essentially an attempt to extend the predictive approach of Funkhouser and Séquin to the

hierarchical level of detail optimization problem.

Funkhouser and Séquin’s approach to solving the level of detail optimization problem is, broadly

speaking, to perform a cost-benefit analysis of the rendering of each possible representation of each

scene object. By considering the perceptual benefit (predicted contribution to the perception of the

scene) and rendering cost of each object representation, they aim to select the scene representation

that provides the best possible contribution to the perception of the scene without taking longer to

render than some fixed maximum permissable rendering time. They assume that there are a finite

collection of distinct objects and that each object has a finite collection of distinct impostors or

drawable representations which constitute its levels of detail. Noting that it is always desirable to

select exactly one representation for every visible object they show that under these assumptions the

level of detail optimization problem is equivalent to the Multiple Choice Knapsack Problem. The

level of detail optimization algorithm that Funkhouser and Séquin propose is an incremental version

of a greedy algorithm for the MCKP.

Funkhouser and Séquin actually state that the level of detail optimization problem is equivalent

to the Continuous Multiple Choice Knapsack Problem [24]. However we argue that it is better

modeled by the MCKP itself. In either case, predictive level of detail optimization is the selection of

a subset of a set of available candidate object representations, subject to constraints on the selection

of objects and their total cost. An instance of the level of detail optimization problem is reformulated

42 CHAPTER 2. BACKGROUND

as an instance of the Multiple Choice Knapsack Problem (see Definition 2.3) as follows:

1. Each candidate item corresponds to one object impostor.

2. The cost and profit of each item correspond to the rendering cost and perceptual benefit of its

associated impostor.

3. The capacity of the knapsack corresponds to the available frame rendering time. The total

rendering cost of the selected scene representation must be less than or equal to this capacity.

4. The candidate items are partitioned into disjoint candidate subsets that correspond to the

objects to which the impostors belong. The selection of one item from a candidate subset

corresponds to the selection of one impostor for its associated object.

5. The objective of the problem is the maximization of the total profit of the selected items. This

corresponds to the aim of maximizing the perceptual benefit of the impostors selected for

rendering.

The constraints on the selection of impostors that distinguish MCKP from C(MCKP) are of

vital importance. In asserting the equivalence of level of detail optimization to the Continuous

Multiple Choice Knapsack Problem, Funkhouser and Séquin allow for the selection of non-integral

portions of candidate items (and therefore incomplete object impostors). However in their level of

detail optimization they treat object impostors as distinct units that may only be either completely

selected or not selected at all [24]. We suggest that the level of detail optimization problem tackled

by Funkhouser and Séquin is better characterized by MCKP itself (in which candidate items may

only be either completely selected or not selected at all) than by its continuous relaxation C(MCKP).

We can easily envisage a variation of the level of detail optimization problem in which object

impostors can be partially rendered; for example that arising from the use of progressive mesh ob-

ject representations from which an impostor at any given continuous level of detail may be extracted

dynamically at render-time, as proposed by Hoppe [35]. Instead of a collection of distinct alternate

representations of each object, a progressive meta-representation may be provided for each object.

This makes it possible to select essentially any fractional proportion of the full detail rendering of

each object (up to the finite resolution of the progressive mesh), inviting comparisons to a contin-

uous relaxation of MCKP such as C(MCKP). Indeed if only one progressive meta-representation

is provided for each object (as seems sensible) then the problem is no longer multiple-choice and

reduces to the linear relaxation of 0-1 KP, for which effective greedy algorithms exist. However

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 43

Funkhouser and Séquin, in our opinion, assume traditional disjoint representations that cannot be

fractionally rendered [24].

Furthermore we foresee a complication with the continuous relaxation-based approach. The

nature of the continuous relaxations of 0-1 KP and MCKP imply that the cost and profit resulting

from the selection of an item are exactly proportional to the selection value of that item. That is, if

the selection value of a given item
�

is � � , then the profit resulting from it is � � � � and the cost is � � � � .
In practice progressively more complex renderings of objects typically provide diminishing returns:

proportionally smaller increases in perceptual benefit for further increases in rendering cost. For

example the perceptual benefit of a rendering of an object with 100000 polygons is not typically

100 times greater than the perceptual benefit of another rendering with only 1000 polygons. In

general the perceptual benefit of a representation is related to its rendering cost by some complicated

arbitrary function. The linear relaxations of 0-1 KP and MCKP are fundamentally incapable of

representing this non-linearity, being linear optimization problems. The MCKP, with its multiple

distinct candidate items in each candidate subset, is capable of coping with the non-linearity by

approximation. The multiple items in each candidate subset of the MCKP serve essentially as a

piece-wise approximation or sampling of the cost and benefit functions of some continuous range

of possible representations, as shown in Figure 10.

cost

p
ro

fi
t

Figure 10: Approximation of perceptual benefit function by multiple candidate
items. The items in a candidate subset, shown as points on a graph of increasing
profit vs. increasing cost. Note how the multiple items in a candidate subset serve
as approximations of some actual continuous function describing the returns, in
terms of perceptual benefit, provided by a series of progressively more complex
renderings.

It is worth noting that even a progressive mesh is capable of producing only a finite number

44 CHAPTER 2. BACKGROUND

of different object impostors. A progressive mesh therefore really functions as a compact or com-

pressed store of a large but finite number of distinct impostors. An important advantage of pro-

gressive meshes however is that they can be non-uniformly generated to favour higher and lower

levels of detail in different areas of a single object, according to the current viewing situation [36].

There is therefore no single meaningful ordering of the potentially generatable impostors in terms

of increasing level of detail. In this research we ignore progressive meshes and assume multiple

distinct object representations. We note however that the multiple representations of varying per-

ceptual benefit and rendering cost that a progressive mesh provides might usefully be represented

by the multiple candidate items in each candidate subset of the MCKP.

In this work we will take it as given that the predictive non-hierarchical level of detail optimiza-

tion problem (as outlined by Funkhouser and Séquin) is equivalent to the MCKP. We assume that

each object impostor may be either completely selected or not selected at all, and that exactly one

impostor representation must be selected for each object. The objective is to maximize the total per-

ceptual benefit of the selected representations while limiting their total rendering cost. Funkhouser

and Séquin exploit this equivalence to produce a non-hierarchical level of detail optimization algo-

rithm based on their greedy algorithm for MCKP described previously in Section 2.5. We describe

their level of detail algorithm in Sections 2.6.1.

Of course, the definition of the MCKP assumes that the profit and cost of each item is well

defined. In practice perfectly accurate numerical measures of the perceptual benefit and rendering

cost of arbitrary object representations are tricky or even impossible to define, as Funkhouser and

Séquin note [24]. The situation isn’t helped at all by the fact that to be useful in realtime level

of detail optimization, these measures must be calculated efficiently for large numbers of potential

scene object representations. Traditionally, simple heuristic metrics for perceptual benefit have

been defined that attempt to provide a flavour of the perceptual issues involved (for example, the

attenuation of vision over distance by perspective and atmospheric haze and the limitations of human

perception) for a small investment of computational cost. Blake [10] and Reddy [59] [62] have been

chief among these. Likewise Funkhouser and Séquin propose the use of simple heuristics called

benefit and cost to predict roughly the perceptual benefit and rendering cost of object representations

as required. They suggest various factors (similar to those mentioned by Blake and Reddy) that such

heuristics might ideally take into account. In practice even the heuristics used by Funkhouser and

Séquin are as rudimentary as possible and take into account only the distance of the object from

the viewer and simple estimates of the perceptual accuracy of impostors (in the case of benefit) and

empirically-derived estimates of their relative rendering cost (in the case of cost). In this thesis we

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 45

ignore entirely the development of more useful heuristics and restrict our attentions to level of detail

optimization algorithms themselves. We assume that useful (although probably not completely

accurate) benefit and cost heuristics may always be defined.

The equivalence between the level of detail optimization problem and the MCKP is subject to

an important assumption that results from the fact that in the MCKP there is no concept of depen-

dencies between the selected representations of different objects. It assumes that the selection of

the representations of separate objects is independent; that selecting a given representation for one

object neither forces nor prevents the selection of any representation of any other object. This as-

sumption holds for the problem tackled by Funkhouser and Séquin (due to their implicit assumption

that all objects and their representations are distinct) but is broken by hierarchical scene descriptions

in which shared representations may be provided for groups of objects. We refer to the class of scene

descriptions in which multiple representations may be provided for objects but no shared represen-

tations may be provided for groups of objects as non-hierarchical level of detail descriptions. Such

a description is illustrated in Figure 11.

21 53 4 6 7 8 9

Figure 11: Non-hierarchical level of detail description. A simple non-
hierarchical scene description with multiple levels of detail. The scene consists of
a collection of distinct objects (shown conceptually as circles). Multiple drawable
representations, or impostors, may be provided for each object (shown as triangles).
Impostors are numbered and the impostors of each object are shown in ascending
order of detail from left to right. Compare with Figure 4 and note that no shared
representations may be provided for groups of objects.

The selection of a shared group representation for one object implies the selection of that rep-

resentation for all of its siblings, as shown in Figure 12. We therefore refer to the subset of the

level of detail optimization problem that Funkhouser and Séquin handle (by virtue of their use of

the equivalence to MCKP) as the non-hierarchical level of detail optimization problem. The pro-

vision of shared representations for groups of objects that characterizes hierarchical level of detail

descriptions invalidates this, giving rise to the hierarchical level of detail optimization problem. We

shall discuss this further in Section 2.7.1.

46 CHAPTER 2. BACKGROUND

Figure 12: Implications of shared object representations. The provision of a
shared representation for a group of objects introduces the implicit constraint that
when the shared representation is selected for one object it must be selected for
all of them. In this example, a single shared cube representation (on the right) is
provided for the eight individual cube objects on the left.

The equivalence between level of detail optimization and the MCKP is subject to another im-

portant assumption: it assumes that the predicted perceptual benefit (or profit) and rendering cost

(or cost) of each representation is independent of the representations selected for other objects. Ma-

ciel and Shirley note in [47] (and more extensively in [46]) that in practice this is not generally the

case. The selection of a particular representation for one object may influence the perception and

rendering cost of other representations of other objects. In the field of psychology the dependence

of the perception of one object on the perception of another is an aspect of Gestalt perception [28].

It is illustrated by an example in Figure 13. Foley et al [22] list the Gestalt rules of group perception

that predict the perception of groups of objects, with particular regard to user interface design [22].

Although Maciel and Shirley draw attention to this assumption they choose explicitly to ignore it

[47]. Like Maciel and Shirley we satisfy ourselves with representing only the dependencies between

objects that are children of the same group object, ignoring more complex and subtle dependencies

and focusing on what can be deduced about the hierarchical level of detail optimization problem by

assuming that the equivalence between the non-hierarchical problem and the MCKP holds.

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 47

Figure 13: Example of Gestalt perception. Each black shape may be perceived as
a circle overlaid with one corner of a white triangle, because of the presence of the
other two black shapes. If any of the black shapes is removed then the perception of
the triangle and therefore of the other shapes is changed (after [28]). Furthermore
if one of the shapes were to be approximated by a low detail impostor consisting of
a complete circle then the perception of the others would also change.

2.6.1 Funkhouser-Séquin Algorithm

Since the MCKP is equivalent to the non-hierarchical level of detail optimization problem (as dis-

cussed in the previous section), the greedy approximation algorithm for the MCKP proposed by

Funkhouser and Séquin (described in Section 2.5.4) is also an approximation algorithm for the non-

hierarchical level of detail optimization problem. Indeed, it is for this purpose that it was proposed.

However a naive implementation of this algorithm as a level of detail optimization algorithm would

require calculating and sorting the benefits, costs and values of all object representations in every

frame (since they are dependent on the viewing situation and so generally change from one frame to

the next). Funkhouser and Séquin therefore formulate an incremental version of the algorithm that

bases its initial solution on the approximate solution found for the previous frame, taking advantage

of frame-to-frame coherence in the form of the similarity of the optimal solutions of consecutive

frames. This algorithm is their predictive incremental non-hierarchical level of detail optimization

algorithm, and embodies the constrained optimization approach that later inspired the predictive

hierarchical algorithm of Maciel and Shirley, which we describe in Section 2.7.1.

Funkhouser and Séquin claim that the incremental algorithm is equivalent to the MCKP greedy

algorithm for a restricted subproblem of the MCKP in which the values (profit / cost) of items

within each candidate subset always decrease uniformly as their cost increases [24]. In terms of

level of detail optimization, this implies that higher (more expensive) levels of detail of objects

48 CHAPTER 2. BACKGROUND

should always provide diminishing returns. If this requirement is satisfied then the two algorithms

are equivalent, otherwise the action of the incremental algorithm is uncertain. By definition higher

levels of detail have higher rendering cost and greater perceptual benefit. It is worth noting that

this approach assumes that the levels of detail of each object are subject to a constant ordering by

ascending perceptual benefit and rendering cost.

The algorithm is designed to be applied once before the rendering of each frame, and its output

is a set of detail levels for the scene objects that is used to decide which object representations

should be rendered. The advantage of the incremental algorithm over the original greedy algorithm

is purely one of efficiency: it exploits the typically large coherence between successive frames (and

therefore their optimal detail levels) by accepting as input an initial solution that is generally the

solution found for the previous frame. The algorithm, shown in Figure 14, is iterative and operates

by successively improving the initial set of selected impostors by a series of refinements, which

are referred to as incrementations and decrementations. Each incrementation and decrementation

consists of the replacement of the selected impostor of a single object with its immediately higher

or lower detail impostor, respectively. Generally a large number of possible incrementations and

decrementations is available at any stage. The algorithm chooses those that best serve to maximize

the total value of the selected set, by eliminating (by decrementation) representations with low value

and selecting (by incrementation) those with high value. This strategy works because of the assumed

ordering of levels of detail by ascending cost and descending value.

In each iteration of the algorithm the selected impostor of one object is incremented. Then the

selected impostors of other objects are decremented, while the total rendering cost of the selected

solution is higher than the available frame rendering time. In each case the object chosen for in-

crementation is that whose subsequently selected impostor (after the potential incrementation) has

greatest value. When an object is chosen for decrementation it is that whose currently selected im-

postor has lowest value. In this way the algorithm, over the course of several iterations, tends to use

up as much of the available rendering time as possible while favouring the higher levels of detail of

objects whose higher levels of detail provide better “bang for the buck” [24]. In this way it attempts

to ensure that the best possible scene representation is provided while limiting the total rendering

cost to the permitted maximum.

The algorithm terminates when the impostor selected during incrementation in an iteration is

immediately deselected by a decrementation in the same iteration. When this occurs the algorithm

has reached its final approximate solution and there is no further work for it to do. After termination

of the algorithm the selected impostor of each object is scheduled for rendering. For simplicity

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 49

input: an instance of the non-hierarchical level of detail optimization problem
input: a feasible initial solution to that instance
output: an improved solution to the instance

// iteratively improve the selected representation by incrementing
// the selected impostors of some objects and decrementing others

begin
select the impostors of the provided initial solution
set done � FALSE
while done = FALSE�

// increment the selected impostor of one object

if any objects are not at their highest levels of detail then�
find the object
 which is not at its highest level of detail
and whose immediately higher impostor has greatest value
increment the selected impostor of
�
// decrement one object, while the total rendering cost is too high

while the total cost is greater than the rendering cost limit�
find the object � which is not at its lowest level of detail
and whose selected impostor has lowest value
decrement the selected impostor of �
if � �
 then

set done � TRUE��
end

Figure 14: The Funkhouser-Séquin incremental level of detail algorithm.

50 CHAPTER 2. BACKGROUND

the algorithm as shown here assumes that the rendering cost limit is sufficient to select at least the

lowest levels of detail of all objects, but not so great that the highest levels of detail of all objects

may be selected. The special cases in which these assumptions do not hold may be weeded out by

trivial tests before the algorithm begins. In such cases the lowest and highest levels of detail of all

objects are selected, respectively.

Equivalence

Funkhouser and Séquin state the equivalence of their greedy and incremental algorithms without

proof in [24]. We provide a proof of the equivalence of two related algorithms in Chapter 7 that can

be easily adapted to serve as a proof for the equivalence of the Funkhouser and Séquin algorithms.
�

The equivalence claim can be intuitively supported by noting that the criterion by which objects

are selected for incrementation is similar to that by which items are selected for replacement in the

greedy algorithm: in both cases the item (or impostor) whose immediately higher cost impostor

has greatest value is selected for replacement. The criterion for decrementation in the incremental

algorithm is the inverse of that for incrementation: the impostor selected for replacement by its

immediately lower cost impostor is that whose value is lowest. To understand why the decreasing

value assumption is necessary, note that the incremental algorithm only ever moves one “step” at a

time: always only considering the immediately higher and lower level of detail of each object. It is

because higher levels of detail always have lower value that it is safe to do this; we know that a poor

immediately higher detail impostor with no hope of selection can never hide another higher detail

impostor of the same object with greater value.

The greedy algorithm is not guaranteed to produce a feasible solution in which exactly one item

is selected from every candidate subset, while the incremental algorithm is guaranteed to select

exactly one impostor for each item (even in the case where the available rendering time or knapsack

capacity is too low). The equivalence of the algorithms therefore depends on the assumption that

either the greedy algorithm is forced to select exactly one item from each subset (by preselecting

the lowest cost items from each one) or the problem instance is augmented with an imaginary “null

item” in each subset with negligible cost and profit.

�

Since we have shown that the algorithm of Funkhouser and Sequin is invalid, and since we present a better algorithm
in Chapter 3, we do not provide this proof.

2.6. NON-HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 51

Complexity

The time complexity of the Funkhouser and Séquin incremental algorithm is
��� � log ��� in the

worst case where � is the number of impostors (or items), like its non-incremental counterpart. This

is due to the fact that in the worst case we must consider and select all object impostors, resulting

in
��� ��� iterations. In each iteration one incrementation and possibly several decrementations take

place. The number of decrementations per iteration is typically small and may be assumed to be��� � � (In the worst case it is � , but in that case the maximum number of algorithm iterations is 1).

Each incrementation or decrementation involves the selection of the highest subsequently valued or

lowest currently valued impostor, which is
��� � � due to the use of ordered priority queues [24]. The

updating of the queues after each incrementation or decrementation is optimally
���

log ��� .
However since the algorithm is incremental and bases its initial solution on the solution found

for the previous frame, it only performs a small number of iterations on average. The average

complexity is therefore better than
��� � log ��� . Situations in which significantly more iterations are

performed are those in which the initial solution is significantly different from the final solution.

For example the first frame, and frames in which the viewing direction is dramatically different

from the frame before. Funkhouser and Séquin do not discuss or address the computation times of

their algorithm in such cases. In Chapter 9 we report on an experiment investigating the practical

behaviour of our own incremental level of detail algorithm, the results of which can also be applied

to the Funkhouser-Séquin algorithm.

Optimality

Funkhouser and Séquin claim that their level of detail optimization algorithm, being equivalent to

their greedy algorithm for MCKP for a restricted subproblem of the MCKP, produces a solution that

is always at least half as good as the optimal solution (in terms of total profit or predicted perceptual

benefit) for that subproblem. Recall however that in Section 2.5.4 we provided a counterexample

for which the greedy algorithm’s solution to MCKP (and, for that matter, C(MCKP)), is not half-

optimal. That counterexample (refer to Definition 2.6), is also a counterexample for the incremental

level of detail algorithm, for the subproblem in which items within candidate subsets are ordered

by ascending cost and descending value. Therefore the Funkhouser and Séquin incremental level of

detail optimization algorithm is not half-optimal for that subproblem as they claim.

A level of detail interpretation of the counterexample is a scene in which an object (candidate

subset 1 in the example) has one representation with high perceptual benefit and very low cost (item

52 CHAPTER 2. BACKGROUND

2), and another with slightly higher perceptual benefit but much higher cost (item 3). For example,

the first representation could be a texture map that is inexpensive to render but is visually very

similar to the second representation consisting of hundreds of polygons. The algorithm is in danger

of inappropriately incrementing the level of detail of the object from the cheap to the expensive

representation, thereby excluding the less “valuable” representations of other objects.

2.6.2 Horvitz-Lengyel Algorithm

Horvitz and Lengyel [37] present another predictive level of detail optimization scheme that is

closely related to and clearly inspired by that of Funkhouser-Séquin. Essentially it, like that of

Schaufler [70] mentioned in Section 2.3, represents the application of the knapsack problem-based

constrained optimization approach to an image-based rendering system in which texture-mapped

polygon impostors (or sprites) are substituted for actual geometry. The images mapped onto the im-

postors are object representations rendered from the original geometry in previous frames, warped

by affine transformations that approximate the actual perspective and geometric transformations

caused by the changes in the position and orientation of objects relative to the camera from one

frame to the next. The advantage of using the impostors is that it is substantially cheaper to warp

and render an existing image-based representation than to re-render the original geometry. A pre-

dictive optimization algorithm is used to decide for each object at the start of each frame whether

to substitute the current image-based impostor or re-render the geometry. Heuristics similar to the

benefit and cost heuristics of Funkhouser and Séquin predict the “perceptual cost” of using an im-

postor and the extra rendering cost incurred by re-rendering the actual geometric representation of

an object. Perceptual cost is essentially the inverse of perceptual benefit and represents the view

that using impostors detracts from the “perfect” perception of the full detail representation.

The scheme of Horvitz and Lengyel differs from the Funkhouser-Séquin and Schaufler schemes

in that their optimization algorithm is based on the greedy approximation algorithm for 0-1 KP

described in Section 2.5.1 rather than on an algorithm for MCKP. Horvitz and Lengyel make the

simplifying assumption that each object has only two possible representations: the full detail geom-

etry and the image-based impostor. Then since each (visible) object must be represented by at least

its image-based impostor, the decision for each object amounts to the selection or non-selection of

the full detail re-render. This presents an optimization problem that is equivalent to the 0-1 KP, in

which the profits and costs of the “items” are the perceptual costs of the low-detail impostors and the

extra rendering costs of the high detail representations. The aim is to select the subset of the items

with greatest total profit (or lowest total perceptual cost) while limiting the total extra rendering cost

2.7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 53

to the available re-rendering time.

Because of this assumption and the resulting equivalence to 0-1 KP rather than MCKP Horvitz

and Lengyel are able to use the well-known greedy algorithm for 0-1 KP. They order the candidate

items (expensive re-renderings) by descending value (profit / cost) and select as many as they can

with the rendering time available. They then compare this greedy solution against the solution con-

sisting of only the item with greatest profit, which is a simpler form of the critical item solution test

(see Section 2.5.1). As we proved in Section 2.5.1, this algorithm always produces a solution that

is guaranteed to be at least as half as good as the optimal one. Its time complexity is
��� � log ��� .

Horvitz and Lengyel use the greedy algorithm as it is, rather than formulating an incremental ver-

sion, so unlike Funkhouser and Séquin they fail to take advantage of frame-to-frame coherence and

must perform an entire greedy optimization over all scene objects for every frame.

In order to use the 0-1 KP greedy algorithm, Horvitz and Lengyel must assume that every object

has only two possible representations. In a typical system in which there are multiple levels of detail

for each object (and possibly in multiple dimensions) this assumption does not hold. To cope with

this difficulty they suggest a simple approach in which detail reductions in other dimensions (such

as reduction of texture resolution or geometric detail) are evaluated by calculating the cost so saved

and considering the selection of additional re-renders that this allows. No guarantees exist on the

quality of solutions reached using this approach.

2.7 Hierarchical Level of Detail Optimization

From our survey of previous level of detail approaches in Sections 2.3 and 2.4 it is apparent that

although both predictive level of detail optimization and hierarchical level of detail optimization are

desirable, to our knowledge few predictive strategies have been proposed and only two of these are

hierarchical. These two predictive hierarchical level of detail optimization algorithms are those of

Maciel and Shirley [47] and Belblidia et al [8].

In Section 2.6 we pointed out that the equivalence between the predictive level of detail opti-

mization problem and the Multiple Choice Knapsack Problem noted by Funkhouser and Séquin is

dependent on several crucial assumptions, one of which is invalidated by hierarchical level of de-

tail descriptions in which shared representations are provided for groups of objects. We therefore

distinguished between the hierarchical and non-hierarchical level of detail optimization problems.

Here we show that the predictive optimization algorithm of Funkhouser and Séquin, being essen-

tially a greedy algorithm for the MCKP, is inherently non-hierarchical. The key difference between

54 CHAPTER 2. BACKGROUND

the problems arises from the fact that in the case of hierarchical descriptions it is possible to select

single shared representations for multiple objects. This difference is the central theme of this thesis,

and our aim is to investigate the hierarchical level of detail optimization problem and formulate

improved optimization algorithms for it.

In response to the difficulties posed by shared group representations, one might suggest simply

doing away with them completely. However shared representations for groups of objects accomplish

more than would separate representations for those objects of identical visual complexity. Shared

representations provide several advantages that are crucial to many of the level of detail optimization

strategies reviewed in Section 2.4 (for example, those of Chamblerlain et al [14] and Shade et al

[75]) and a great number of level of detail models:

1. As we noted in Section 2.4, they allow increased computational efficiency since multiple

objects can be dealt with by the consideration of only one shared impostor.

2. With shared simple representations it is possible to ensure that visual and topological coher-

ence is maintained between the simplified representations of related objects. For example in

Figure 13 it might be useful to ensure that simple representations for the three black shapes

are consistent in their representation of the three shapes. Likewise it might be desirable that

a group of related objects are either all textured-mapped or not texture-mapped at all. The

sharing of low detail representations between objects serves to constrain their possible selec-

tion, ensuring that inappropriate combinations of low and high detail representations are not

selected.

3. Shared geometric representations are generally more storage and computationally efficient

than collections of separate representations for the same objects that are visually equivalent,

due to the elimination of redundant geometry and the ability to make use of simplified topolo-

gies.

These benefits account partly for the pervasiveness of hierarchical representations of various forms

in everyday life. Hierarchical decompositions aid the design of complex systems such as massively

integrated circuits where each component is assembled from coherent subcomponents whose func-

tion is abstracted from their design.

In this Section we discuss the two predictive hierarchical level of detail algorithms that we are

aware of: that of Maciel and Shirley and that of Belblidia et al.

2.7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 55

2.7.1 Maciel-Shirley Algorithm

Maciel and Shirley claim in [47] that their level of detail optimization algorithm is a hierarchical

extension of the approach of Funkhouser and Séquin, re-iterating Funkhouser and Séquin’s over-

statement that the level of detail optimization problem is equivalent to the MCKP. In actual fact the

Maciel-Shirley algorithm differs significantly from the Funkhouser-Séquin algorithm, as we might

expect.

Maciel and Shirley assume a hierarchical level of detail description such as that shown previ-

ously in Figure 4. This description is a part-whole description and is distinguished from that of

Funkhouser and Séquin by the fact that objects are grouped recursively and multiple shared repre-

sentations, or impostors, are provided for groups of objects. At least one impostor must be provided

for every object.

Maciel and Shirley define heuristic measures called importance and accuracy that predict the

inherent importance of objects to user conviction and the visual accuracy of object impostors. Im-

portance is based on the identities of objects and their position and size on the screen, and is in-

dependent of their selected representation. It is defined principally for leaf objects (those without

children), and the importance of non-leaf objects is assumed to be the maximum of the importance

measures of their children. Accuracy predicts the visual “appropriateness” of impostors to a given

viewing situation and depends for example on impostor complexity and the direction from which

they are viewed.

In addition a cost heuristic predicts the rendering cost of impostors. The aim of the algorithm

can be expressed simply in terms of these measures: to limit the total cost of the selected scene

representation while maximizing its total perceptual benefit (which is assumed to be the sum of the

importance and accuracy measures of the selected object representations).

The algorithm is applied once per frame and consists of two stages. In the first stage, the

problem of having multiple impostors explicitly associated with each object is solved by traversing

the tree and selecting, for each object in turn, one of its associated impostors to serve as its available

representation. The impostor selected for each object is that which most accurately represents it in

the current viewing situation (some impostors for example are only convincing when viewed from

certain angles). The result of the initial stage is that exactly one of the impostors of each object is

marked as the available impostor of that object. It is this impostor that will be used to explicitly

represent that object, if available cost allows.

The second stage of the algorithm is a greedy selection stage in which the selected representa-

tion of the entire scene is iteratively improved as much as the available cost will allow. The scene

56 CHAPTER 2. BACKGROUND

representation selected at each stage is some subset of the set of available impostors of all the nested

scene objects. Initially the selected representation consists of only the available impostor of the root

(or scene) object. In each step the selected representation is improved by the replacement, if it can

be afforded, of one selected available impostor by the available impostors of the children of that

object. The object whose selected available impostor is replaced is that whose importance (as pre-

dicted by the importance heuristic) is greatest. In other words, the greedy selection favours more

detailed representations of more important objects. The algorithm keeps track of the total cost of the

selected representation (by means of incremental updates) and if an earmarked replacement cannot

be afforded without exceeding the permitted maximum cost limit then that object is removed from

consideration and its selected representation is scheduled for rendering. This greedy selection con-

tinues until no further replacements can be made. The scene representation selected for rendering

then consists of those impostors scheduled for rendering during greedy selection.

The algorithm selects available representations for objects based on accuracy, without regard to

cost, and then selects a scene representation from these available representations based on impor-

tance, without regard to value (perceptual benefit/cost) or cost. This constitutes a greedy selection

based on importance (or, loosely, benefit).

Complexity

The time complexity of the algorithm of Maciel and Shirley is
��� ��� . The complexity of the initial

stage, in which an available representation is chosen for each object, is
��� ��� with respect to the

number of impostors. Each object must be considered and there are
��� ��� objects (on the assump-

tion that the number of impostors belonging to each object is
��� � �). The selection of the most

appropriate representation for each object is
��� � � with respect to � . The complexity of the greedy

stage, in which the selected representation of the scene is incrementally improved, is also
��� ��� in

the worst case.
�

Optimality

No guarantee exists as to the optimality of the Maciel and Shirley greedy algorithm’s solution to

the hierarchical level of detail optimization problem. The optimality of the algorithms solution can
�
Although in [47] it is claimed to be possible to reduce it to ��� log ��� . We can see no way of doing this since in the

worst case the selected representation of the scene must be exhaustively improved from the selected representation of the
root object to the selected representations of the leaf objects. In this case all objects must be visited, so the complexity is
��� ��� .

2.7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION 57

be measured by the total profit of the algorithm’s solution, where the profit of a selected impostor

is defined by Maciel and Shirley to be the sum of the accuracy of the impostor and the importance

of the object it represents [47]. In the worst case it may be arbitrarily bad. Firstly, the algorithm is

capable of selecting available object representations that are very expensive and therefore represent

poor value for their benefit. Secondly, we can imagine a situation in which the algorithm replaces

a selected available impostor with the many expensive available impostors of its children, because

one of them has a high importance.

Figure 15 shows a pathological instance of the hierarchical level of detail optimization problem

for the algorithm of Maciel and Shirley. The problem illustrated by this example is that the algorithm

selects objects for incrementation based on their importance, without regard to the accuracy or cost

of their available representations. The algorithm selects the impostors of the left-most two leaf

objects and the impostor of the right child of the root object, with a total profit of 3.4, while the

optimal solution consists of the impostors of the right-most two leaf objects and the impostor of

the left child of the root, with a total profit of 201.4. By varying the accuracies and costs of the

impostors in the example the algorithm’s solution may be made arbitrarily bad. We will return to

the solution quality of the Maciel-Shirley algorithm in Section 4.3.

0.2

0.2 0.1

0.1 0.1 0.10.2

0.5, 0.5

1, 1 1, 1

1, 5 1, 4 100, 5 100, 4

Figure 15: Pathological example for the Maciel-Shirley algorithm. The ac-
curacy and cost of each available impostor is shown below the impostor, and the
importance of each object is marked on that object. The rendering cost limit is 10.

2.7.2 Belblidia et al Algorithm

Belblidia et al [8] [7] present a predictive hierarchical level of detail optimization scheme that

appears to be directly influenced by that of Maciel and Shirley. Like Maciel and Shirley, they use

58 CHAPTER 2. BACKGROUND

a hierarchical level of detail description with shared object representations and a predictive level

of detail optimization algorithm that limits the predicted rendering cost of the scene representation.

Their approach is distinguished by the fact that they propose two algorithms for level of detail

control: one that favours image quality while removing as much unnecessary detail as possible, and

another that favours the regulation of frame rates and removes as much detail as is necessary to

limit predicted rendering times. The first is essentially static and the other predictive. Their dual-

algorithm approach is in contrast to the single algorithms of Funkhouser and Séquin and Maciel

and Shirley, which attempt to maximize visual quality while regulating frame rates. The use of two

separate algorithms emphasizes the fact that the approach taken in the predictive algorithm is not

well-geared towards maximizing visual quality.

Like Maciel and Shirley, Belblidia et al use a greedy algorithm that incrementally replaces the

selected impostors of objects with the available impostors of their children. However, unlike Maciel

and Shirley, their greedy selection is based purely on the arbitrary order of the children rather than

on any estimate of importance or representational accuracy. In our opinion this represents a step

backwards from the already flawed greedy selection heuristic of Maciel and Shirley. Hence it cannot

be expected to provide guaranteed or even approximately optimized levels of perceptual quality.

2.8 Summary

In this chapter we have discussed relevant background work, outlined more clearly the problem we

intend to address, and discussed limitations of related previous work. We defined the level of detail

optimization problem, being the problem of dynamically and automatically selecting detail levels

for each object in a visualization system so as to maximize the perceptual benefit of the selected

scene representation, whilst ensuring that the rendering cost of the selected scene representation

never exceeds some reasonable limit.

We noted that the use of hierarchical level of detail descriptions in level of detail optimization

is very common, and so defined the hierarchical level of detail optimization problem, being the

level of detail optimization problem as it applies to hierarchical level of detail scene descriptions

in which shared representations may be provided for groups of objects. However we noted that of

the few predictive level of detail optimization algorithms proposed so far, the most promising is

strictly non-hierarchical and does not permit the use of shared representations for groups of objects.

For this reason we also defined the non-hierarchical level of detail optimization problem, being

the predictive level of detail optimization problem for a strictly non-hierarchical level of detail

2.8. SUMMARY 59

description in which objects are distinct and no shared representations are permitted for multiple

objects.

We observed that the non-hierarchical level of detail optimization problem has been shown to

be equivalent to the (NP-complete) Multiple Choice Knapsack Problem. We then showed that the

hierarchical level of detail optimization problem was not.

Lastly we described several predictive level of detail optimization algorithms in detail. Two

are non-hierarchical and the other two hierarchical. The non-hierarchical algorithm of Funkhouser

and Séquin has a time complexity of
��� � log ��� in the worst case but is incremental and typically

completes in only a few iterations. However its approach is flawed and it fails to provide solutions

of guaranteed quality levels as is claimed. The other non-hierarchical algorithm, by Horvitz and

Lengyel, is essentially a simplified version of the Funkhouser-Séquin approach. It provides qual-

ity guarantees but fails to cater effectively for multiple levels of detail. The hierarchical algorithm

of Maciel and Shirley has a time complexity of
��� ��� but is not incremental and performs a full

optimization for every frame. Neither algorithm provides any guarantees as to the quality of its ap-

proximate solution, in spite of claims made by their authors. We aim in this thesis to examine more

formally the hierarchical level of detail optimization problem and to devise new greedy optimization

algorithms for it.

Chapter 3

Greedy Algorithm for the MCKP

In this chapter we present a greedy approximation algorithm for the Multiple Choice Knapsack

Problem (MCKP), which was defined in Section 2.5. Recall from Section 2.6 that the MCKP was

shown to be equivalent to the non-hierarchical level of detail optimization problem. This algorithm

is therefore a first step towards an improved non-hierarchical level of detail optimization algorithm.

In Chapters 4 and 6 we will look at extending the MCKP and this algorithm for it to cater for the

more complex hierarchical level of detail optimization problem.

We actually present two greedy approximation algorithms for the MCKP in this Chapter. While

the second is a complete algorithm that is guaranteed at least half-optimal for the entire problem, the

first is a simplified algorithm that is half-optimal for a well-defined subproblem. We show that the

simplified algorithm is likely to be useful in many practical applications, including level of detail

optimization. This simplified algorithm has two advantages over the full algorithm: it has a lower

time complexity, and it may be made incremental so that it accepts as input an initial best-guess

solution derived from the previous problem instance. The ability to be made incremental makes the

algorithm useful for level of detail optimization. It is this algorithm which we will extend to the

hierarchical level of detail optimization problem in later chapters.

We begin in Section 3.1 by introducing a metric, relative value, that measures the value of items

in the MCKP relative to other items from the same candidate subset. This metric represents the

insight instrumental to the development of our algorithm: that when items in the MCKP are con-

sidered for selection by an approximation algorithm it is generally as replacements for previously

selected items from the same candidate subset (recall from Definition 2.3 in Section 2.5.2 that only

one item may be selected from each subset). It is this metric that allows us to formulate and prove

correct approximation algorithms for the MCKP. In Section 3.2 we discuss the MCKP in general

60

3.1. RELATIVE VALUE 61

and introduce the convexity assumption, a simplifying assumption about the nature of the MCKP

that makes the first, simplified, greedy algorithm possible. In Section 3.3 we present the simplified

algorithm. In Section 3.4 we prove that its solution is always at least half as good as the optimal

solution, as long as the convexity assumption holds. In Section 3.5 we present the second, complete

algorithm for the MCKP that does not depend on the convexity assumption. In Section 3.6 we prove

that that algorithm’s solution is always at least half-optimal. This proof is an extension of the proof

presented for the simpler algorithm in Section 3.4.

In Section 3.7 we discuss the expected error of the algorithms over and above the worst case

half-optimality guarantee and the implications of the convexity assumption. We show that the cases

in which the assumption does not hold are relatively rare. In Section 3.8 we compare our algorithms

with that of Funkhouser and Séquin (discussed in Section 2.6.1) and remark on the practical impli-

cations of the improvements that our algorithms represent. Recall from Chapter 2 that Funkhouser

and Séquin [24] proposed a non-hierarchical level of detail optimization algorithm that was essen-

tially a greedy approximation algorithm for the MCKP. We however showed that their algorithm

suffers from several limitations, most notably that its solution is not guaranteed to be half-optimal

as they claim. The algorithms presented here are therefore intended as corrections and replacements

for theirs. In Section 3.9 we discuss the conversion of the simplified algorithm to an equivalent in-

cremental version that exploit frame-to-frame coherence, with the aim of increasing efficiency in

level of detail optimization. Finally in Section 3.10 we summarize the main points of the chapter.

3.1 Relative Value

In this section we define a metric, relative value, that is the core of both greedy algorithms for the

MCKP described in this chapter. This metric was referred to as slope by Armstrong et al [5], where

it was used in a greedy algorithm for C(MCKP), the continuous relaxation of MCKP.

Recall that in the greedy algorithm for the 0-1 KP described in Section 2.5.1, the value (profit

/ cost) of each item was used as a metric measuring the desirability of those items for selection.

Items were simply ordered by descending value and selected if they could be afforded. The MCKP,

by contrast, is characterized by the fact that exactly one item must be selected from every candidate

subset. In the MCKP therefore the selection of an item is generally a replacement and entails not

only the selection of that item at a certain cost and profit but also the loss of a previously selected

item from the same candidate subset for a certain decrease in cost and profit. Alternatively we can

regard the replacement of an item by another more expensive item as the selection of an imaginary

62 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

relative item that is the difference between the old item and the new (see Figure 16). Relative value

essentially measures the value of this imaginary relative item.

a b a b’

Figure 16: Relative value. When an item is selected in the MCKP, it is usually at
the expense of some previously selected item from the same candidate subset. This
figure shows how, when an item � is replaced by a more expensive item

�
, the effect

is equivalent to the selection of an additional item
� �

that is the difference between
� and

�
. The relative value of

�
with respect to � provides a measure of the value of

� �
, the effect of replacing � with

�
.

Simply considering the value of each item without regard to the profit and cost of the item it

replaces leaves the value-based greedy selection criterion of Funkhouser and Séquin (Section 2.5.4)

open to discarding items that provide high profit for low cost in favour of items of slightly higher

profit but with much greater cost in the MCKP.

In order to measure better the net effect of the selection of an item at the expense of a previously

selected item from the same subset, we define a new metric, relative value, which measures the

“desirability” of items as replacements for previously selected items from the same candidate subset:

Definition 3.1 Relative Value

The relative value of a candidate item
	

with respect to another candidate item
�

from the same

candidate subset is defined as:

RV
� 	 � � � � ��� � � ���� � � �

where ��� and ��� are the profit and cost of item
	
, and � � and � � are the profit and cost of item

�
respectively.

The relative value of an item is always measured relative to some other item from the same

candidate subset. When we speak of the relative value of an item we will usually be referring to its

relative value relative to the currently selected item from that subset.

3.2. CONVEXITY ASSUMPTION 63

3.2 Convexity Assumption

In this section we discuss the nature of the MCKP in general and introduce the convexity assumption

upon which our simplified algorithm depends. It is useful to visualize the set of items in a candidate

subset on a graph of increasing profit vs. increasing cost as shown in Figure 17. Each item is

represented as a single point. It follows from the IP-dominance
�

of items with lower profit and

greater cost by items from the same subset that the graph represented by the successive items must

be monotonically increasing [49]. Any solution involving an IP-dominated item
	

can be trivially

improved by replacing
	

with its dominating item
�
. Such dominated items may be removed as a

preprocess to any MCKP algorithm [49].

cost

p
ro

fi
t i

j

Figure 17: A candidate subset represented on a profit vs. cost graph. Each
point represents an item, plotted on a graph of increasing profit vs. increasing cost.
Due to the IP-dominance of items with lower profit and greater cost than other items
from the same candidate subsets, the graph may be assumed to be strictly increas-
ing. In this instance

	
is dominated by

�
and can be removed from consideration.

Our greedy algorithms for MCKP both select, as a conservative initial solution, the lowest cost

item from each candidate subset. This ensures that every subset is represented. We then iteratively

replace selected items with more expensive items from the same subset, as far as the available

knapsack capacity will allow. Each replacement preserves the feasibility of the solution, since the

replacing and replaced items always belong to the same candidate subset.

The items that are not selected initially are considered as replacements in a specific order which

guarantees that items that provide greater “bang for the buck” are considered first. The relative
�

IP stands for Integer Programming.

64 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

value metric is used to order the replacement items, since it provides a measure of the effect of

replacing one item with another.
�

At each stage the relative value of each item under consideration

is measured with respect to the currently selected item from its candidate subset, since this is the

item which it may replace. The most desirable replacement item in each subset is that with greatest

relative value with respect to the currently selected item from that subset. The most desirable

replacement item from all subsets is that with greatest relative value with respect to its respective

selected item. A simple example is provided in Figure 18.

1/2

4/6

3/4

7/5

2/2

6/3

3/4
3/1

7/4

5/8
4/3

1/2

2/7

4/3

Figure 18: Selection within candidate subsets. In this example items are shown
as profit / cost pairs. The currently selected item from each candidate subset is
shown in bold, and available replacements are shown as arrows labeled with the
relative values of the replacement items. The most desirable replacement in the
first subset is �
 � with relative value �� , and in the second subset it is �
 � with
relative value

�

� . The most desirable replacement from any subset is therefore �
 �

as a replacement for
�
 �

.

Since the relative value of each item is measured with respect to the currently selected item from

its subset, whenever a selected item is replaced with another, the relative values of all the remaining

items in that subset must be updated. This in general changes the ordering of those items in terms

of relative value. In the case of our full MCKP algorithm (presented in Section 3.5), this is exactly

what occurs. The situation is simplified significantly however if we assume that the items within

each subset are ordered by descending relative value when they are ordered by ascending cost. We

call this condition the convexity assumption:

Definition 3.2 The convexity assumption

The convexity assumption holds if, whenever there exist three items
� � 	 � � in the same candidate

�

Compare this with the use of value by Funkhouser and Séquin in their greedy algorithm described in Section 2.5.4.

3.3. SIMPLIFIED ALGORITHM 65

subset such that � � � ����� � � , it is true that

RV
� 	 � � � �

RV
� � � � � �

When the convexity assumption holds the graph of every candidate subset is convex, as shown in

Figure 19. In that case our MCKP algorithm can get by with always considering only the items with

immediately higher cost than the currently selected items in each candidate subset. Furthermore the

ordering of items within each candidate subset in terms of descending relative value with respect to

the currently selected item in each subset does not change as new items are selected. An algorithm

exploiting the assumption need only consider the items in each candidate subset in ascending order

of cost:at each stage the most desirable unconsidered replacement item in each subset is that with

lowest cost. Our simplified MCKP algorithm, which we present in Section 3.3, is based on this

assumption.

cost

p
ro

fi
t

i

j

k

l

Figure 19: A convex candidate subset. When the convexity assumption holds, the
items in each candidate subset decrease in relative value as they increase in cost.
The relative value of an item with respect to another corresponds to the gradient of
the line between them.

3.3 Simplified Algorithm

In this section we describe our simplified greedy algorithm for the MCKP that makes use of the

relative value metric described in Section 3.1 and exploits the convexity assumption introduced in

Section 3.2.

66 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

input: an instance of the MCKP (see definition 2.3)
output: a feasible solution to that instance

begin
set ��� � � � � empty list // no critical item yet, empty list
set � � � � � � � � � �

� � � � � � � � � where
� � is the cheapest item in subset

� �

for
� � � � � � � � � � � � � // for each candidate subset�
order the items in subset

� � by ascending cost
set ��� � � � // select the cheapest item in subset

� �

for each item
� � � � � � �� � � // for all other items in subset�

set � � the immediately lower cost item from
� � than

�

set ��� � � � relative value � ��� � � � �	 � � 	 �insert
�

into
�

// add
�

to the list of unconsidered items��
order the items in

�
by descending relative value

for each item
	

in
�

// for each unconsidered item�
set

� � the item from the same candidate subset
� � as

	
such that ��� � �

if � � � � � � � ������� � ����� � then // if we can afford to replace
�

with
	

set ��� � � � ��� � � // replace
�

with
	

else
if � � � then set ��� 	

// if there is no critical item yet,
	

is critical�
if � �� � then // if there is a critical item� // then consider the critical item solution

set
 � the item in � from the same candidate subset as �
if � � � � � ��� �� � ���� � � � � � � � � and � � � � � ������� � ����� � then

set � � � � �
if
� � � or (

� � � and
���
)� otherwise

� � � ��
end

Figure 20: The simplified greedy algorithm for the MCKP.

3.3. SIMPLIFIED ALGORITHM 67

The algorithm is shown in Figure 20, and its operation is illustrated by an example in Figure

21. The algorithm begins by inserting into the knapsack a minimal initial solution consisting of

the lowest cost item from each candidate subset. This initial solution is then iteratively improved

by the successive replacement of selected items with the immediately more expensive items from

their candidate subsets, as far as the available space in the knapsack will allow. The unconsidered

items at any stage are considered for selection in descending order of relative value (with respect to

the currently selected items from their respective subsets). By virtue of the convexity assumption

(Section 3.2), this also constitutes an ordering within subsets by increasing cost. Therefore only

the lowest cost item in each subset must be considered at each stage. An item under consideration

replaces the item from the same subset already in the knapsack if the replacement can be afforded;

otherwise it is discarded.

After the greedy selection phase the resulting solution is compared to the critical item solution.

The critical item is the first item to be rejected during greedy selection due to its cost being too

high.
�

The critical item solution consists of the critical item and the lowest cost items from each of

the other candidate subsets. If the critical item solution has greater profit and can be afforded then

it is selected instead. The critical item check serves the same purpose as in the greedy algorithm

for 0-1 KP (See Section 2.5.3). It guards against the pathological case in which the particular sizes

of the knapsack and items favours the selection of a solution of low value that happens to fit the

available space but whose selection would otherwise be prevented by the selection of higher valued

items of low profit.

The time complexity of the simplified algorithm is
��� � log ��� in the number of candidate items,

due to the sorting step in which the items are ordered by descending relative value. The critical item

is found automatically as a by-product of the greedy selection stage. An immediate optimization

that increases the efficiency of the algorithm is to discount all remaining items within a candidate

subset as soon as any item from that subset has been found to be too expensive. Since the items

in each subset are considered in ascending order of cost, any remaining items must also be too

expensive.

�

Not counting items that are too expensive to be elements of any feasible solutions — if such infeasible items exist
then they should be discarded as a preprocess.

68 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

a b

c d

e f

1/2

3/3

4/5

2/1

3/2

5/5

6/82/1

1/1

1/2

3/3

4/5

2/1

3/2

5/5

6/81/2

1/1

1/2

3/3

4/5

2/1

3/2

5/5

6/81/2

2/3 1/2

3/3

4/5

2/1

3/2

5/5

6/81/2

1/3

1/2

3/3

4/5

2/1

3/2

5/5

6/8

1/3 1/2

3/3

4/5

2/1

3/2

5/5

6/8

Figure 21: Example execution of the simplified MCKP algorithm. This exam-
ple shows the operation of the simplified MCKP algorithm for an instance of the
MCKP with 7 items (shown as profit/cost pairs) partitioned into 2 candidate subsets
(circles), and with a knapsack size of 9. (a) Initially the items in each subset are
ordered by ascending cost (indicated by the arrows) and the cheapest item in each
subset is selected (bold items). Arrows leading to items available for selection are
labeled with the relative values of those items. The available replacement item with
greatest relative value is 3/3 in the first candidate subset. It can be afforded and so
is selected, replacing 1/2. (b) 3/2 has greatest relative value and can be afforded, so
it replaces 2/1. (c) 5/5 has greatest relative value and can be afforded, so it replaces
3/2. (d) 4/5 has greatest relative value but cannot be afforded, so it is discarded. (e)
6/8 is the only remaining item but cannot be afforded, so it is discarded. (f) The
algorithm’s solution is 3/3 and 5/5, for a total profit of 8. The critical item is 4/5,
and the critical item solution is 4/5 and 2/1, for a total profit of 6.

3.4. PROOF OF HALF-OPTIMALITY FOR THE SIMPLIFIED ALGORITHM 69

3.4 Proof of Half-Optimality for the Simplified Algorithm

In this section we prove the half-optimality of the MCKP greedy algorithm described in Section

3.3, for the subproblem of the MCKP defined by the convexity assumption introduced in Section

3.2. Recall that the convexity assumption holds when the relative values of items within candidate

subsets always decrease monotonically with increasing cost. The proof is an extension to the MCKP

of the general approach embodied by the proof for the 0-1 KP algorithm presented in Section 2.5.1.

3.4.1 Overview of Proof

The proof consists of six steps:

1. We formulate an equation relating the profit of the optimal solution to that of the solution
�

reached at an intermediate stage in the greedy algorithm immediately before the consideration

and rejection of the critical item. This equation provides an upper bound on the maximum

error of the greedy algorithm and includes terms that quantify the profit lost by not selecting

items that are in the optimal solution and the profit gained by selecting items that are not.

2. We show that any items that are in the optimal solution but were not selected by the greedy

algorithm before the rejection of the critical item must have lower relative value than the

critical item, since they were not selected before it.

3. Similarly we show that any items that were selected by the greedy algorithm before the rejec-

tion of the critical item but are not in the optimal solution must at least have higher relative

value than the critical item, since they were selected before it.

4. Using the results of steps 2 and 3, we show that the maximum error of the greedy algorithm

is bounded by the total difference in cost between the optimal solution and
�

, multiplied by

the relative value of the critical item.

5. Then we show that the difference in cost between the optimal solution and
�

is bounded by

the difference in cost between the critical item and the item from the same candidate subset

that is selected in the intermediate greedy solution.

6. Substituting, we show that the maximum error of
�

is bounded by the difference in profit

between the critical item and the selected item from the same subset. Recalling that the

algorithm also considers the critical item solution, we conclude that the algorithm’s solution

is at least half as good as the optimal one.

70 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

3.4.2 Proof

1. Given an instance of the MCKP, let the profit of the optimal solution to this instance be	 . Let
�

be the set of items in the intermediate solution reached by the greedy algorithm

immediately before the critical item is considered (and rejected), and let 	 � � � � � � � � be the

profit of this partial greedy solution.
�

Recall that both the optimal solution and the intermediate greedy solution
�

must contain

exactly one item from every candidate subset. Therefore the profit of the optimal solution is

equal to the profit 	 � of the partial greedy solution
�

plus, for each candidate subset
� � , the

difference between the profits of the item
 � � � � which is in the optimal solution and the

item � � � � � selected in
�

: 	 � 	 � � ��
� �� � ��� � � � � � � �

Therefore 	
� 	 � � �
� � �

� ��� � � � � � � � �� � � � � � � � ��� � � (14)

where � is the set of candidate subsets for which
 � has greater cost (and profit) than � � ,
and � is the set of candidate subsets for which � � has greater cost (and profit) than
 � . In

other words, � contains those candidate subsets in which the algorithm selected “less” than

it should have, and � contains those where it selected “more” than it should have.

2. In this step we consider the candidate subsets
� � that are in � . Recall that these are those

for which the item
 � � � � in the optimal solution has greater cost than the item � � � � �
selected in

�
. We show that in such cases the item
 � in the optimal solution must have lower

relative value (with respect to � �) than the critical item � (with respect to the item
 from the

same subset as � , that is selected in
�

). This follows from the fact that � was chosen for

selection and
 � was not.

When the critical item � was chosen for selection (and rejected) the set of currently selected

items was exactly
�

. Therefore the critical item was considered as a replacement for some

item
 that is an element of
�

, and was considered instead of some item � � that is the element

of
� � of immediately higher cost than � � . Therefore � � has lower relative value (with respect

�

In practice the algorithm may go on to select other later items, replacing items in � , but since every replacement
increases the total profit of the selected items, we know that the profit of the final greedy solution is greater than or equal
to � 	 .

3.4. PROOF OF HALF-OPTIMALITY FOR THE SIMPLIFIED ALGORITHM 71

to � �) than � (with respect to
):� � � � � � �� � � � � � � � �� � ����� ����� � � � � �
Now because the items in each candidate subset decrease in relative value as they increase in

cost (from the convexity assumption — Definition 3.2), it must be true that��� � � � � �� � � � � � � � �� � ����� ����� � � � � � (15)

3. In this step we consider the candidate subsets
� � that are in � . Recall that these are those

for which the item
 � � � � in the optimal solution has lower cost than the item � � � � �
selected in

�
. We show that in such cases the item � � in

�
must have greater relative value

(with respect to
 �) than the critical item � (with respect to
). This follows from the fact that

� � was chosen for selection before � .
When the critical item � was chosen for selection (and rejected) the set of currently selected

items was exactly
�

. There must therefore exist a sequence of items
	 � � 	 � � 	 � � � � � � 	 � in

� �

from
 � to � � (that is,
	 ���
 � and

	 � � � �) such that
	 � ��� is selected as the replacement for

	 � for all of
� � � � � � � � � � � � 	 � � .

Likewise there must exist a sequence of items � � � � � � � � � � � � � ��� in the candidate subset

containing � and
 where � � is the cheapest item in that candidate subset, ����� � , ��� � ���
 ,
and ��� ��� is selected by the algorithm as the replacement for � � for all of

� � � � � � � � � � � � � �
�
. Note that ��� is not selected as the replacement for ��� �

� , because ��� (ie. �) is not selected

at all.

Then we know that the algorithm at some stage replaced
	 � �

� with
	 � (ie. � �) instead of

replacing some item ��� in the sequence � � � � � � � � � � � � � ��� �
� with ��� ��� , since

	 � was

selected and � was not. Therefore� � � � ��� � � �� � � � ��� � � �

�
�
	��

�
� �
	 ���	��

�
� ��	 � �

Now because the items in each candidate subset are considered in order of ascending cost and

therefore descending relative value (from the convexity assumption — Definition 3.2) it must

be true that � � � � ��� �� � � ��� � � � �� � ����� � ��� � � � � � (16)

72 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

4. Therefore, from (14), (15) and (16) we have	 � 	 � � �
� � �

� � � � ��� � � � �� � ����� � ��� � �� � � � � � � � � � � � �� � ����� ����� (17)

� 	 � � 	
 �
� � �

� � � � ��� � � � � �� � � � � � � ��� � � � � �� � ����� � ��� (18)

� 	 � � ��
� �� � � � � ��� � � � �� � ����� ����� � (19)

5. Let � � � � � � � � � � be the space left in the knapsack after the selection of
�

, immediately

before the rejection of the critical item � . From the fact that � was rejected we know that the

difference in cost between � and
 is greater than � :� � ��� ����� � (20)

Furthermore we know that the total difference in cost between the items in the optimal solu-

tion and the items from the same candidate subsets in the greedy solution must be less than

or equal to � :
��
� �� � � � � � � � � ��� � �

Therefore, from (20),
��
� �� � � � � ��� � � � � ��� ����� � (21)

6. Therefore, from (19) and (21),	 ��	 � � � ��� � ��� � �� � ����� ����� (22)��	 � � �� � �� (23)��	 � � �� � (24)

Recall that the greedy algorithm compares the total profit of the final greedy solution (which

is greater than or equal to 	 �) to the total profit 	 � of the cheapest solution containing the

critical item (which is clearly greater than ���), and keeps whichever solution is better. That

is, the algorithm’s solution has profit 	
 � max
� 	 � � �� � . Therefore, from (24),	
 �
�

�
	

and the profit of the algorithm’s solution is guaranteed to be at least half the profit of the

optimal solution.

3.5. FULL ALGORITHM 73

The critical item check is complicated slightly by the fact that the critical item by itself is not a

feasible solution; hence the algorithm constructs a complete solution containing the cheapest item

from every other subset. However it is certain that this lowest cost critical item solution will be

feasible, since otherwise the critical item would not be a feasible item itself and would have been

removed in the reduction pre-process.

3.5 Full Algorithm

In this section we present our full algorithm for the MCKP, which we prove (in Section 3.6) is at

least half-optimal for the entire problem. The algorithm differs from the simplified one presented

in Section 3.3 in that it does not make use of the convexity assumption. The selection of items

in descending order of relative value may therefore not constitute an ordering by ascending cost

within candidate subsets. The algorithm must therefore be prepared to consider, at each stage, any

of the remaining items in each candidate subset. When the most desirable replacement item is too

expensive to be selected, the algorithm must also consider other “concave” items from the same

subset with lower relative value.

The algorithm is shown in Figure 22. Its operation is illustrated by an example in Figure 23.

Like the simplified algorithm it begins by selecting as an initial solution the lowest cost item from

each candidate subset. The remaining items are considered one by one as potential replacements for

currently selected items. Each replacement increases the total cost and profit of the solution. The

potential replacement items are considered in descending order of relative value, always measured

with respect to the currently selected items from their respective subsets. At each stage the item with

greatest relative value with respect to its respective selected item is considered for selection. If it can

be afforded, it is selected and the currently selected item from that subset is discarded. The relative

values of the remaining items from that subset are updated (with respect to the newly selected item)

and any unconsidered items with lower cost than the newly selected item are discarded. Since these

discarded items have lower costs than the selected item they are assumed, essentially, to have been

briefly selected and immediately replaced by the more expensive newly selected item.

In the event that the potential replacement cannot be afforded the item under consideration is

simply discarded and is marked as the critical item � if it is the first item to be rejected in this way.

Like the simplified algorithm of Section 3.3, the full algorithm considers the critical item solution

consisting of the critical item and the lowest cost items from all other subsets.

The algorithm assumes that there are no items that have greater cost but lower profit than other

74 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

input: an instance of the MCKP (see definition 2.3)
output: a half-optimal or better solution to that instance

begin
set ��� � � � � empty list // no critical item yet, empty list
set � � � � � � � � � �

� � � � � � � � � where
� � is the cheapest item in subset

� �

for
� � � � � � � � � � � � � // for each candidate subset�
set ��� � � � // select the cheapest item in subset

� �

for each item
� � � � � � �� � � // for all other items in subset

set ��� � � � relative value � � RV
� � � � � � � � � � � � ��

while
�

is not empty // while there are unconsidered items�
set

	 � the item with greatest relative value in
�

set
� � the item from the same candidate subset

� � as
	

such that ��� � �
set
� � � � � 	�� // remove

	
from

�

if � � � � � � � ������� � ����� � then // if we can afford to replace
�

with
	�

set ��� � � � ��� � � // replace
�

with
	

for each item � � � � in
�

// update the candidate subset containing
	

if ��	 � ��� then // if � has lower cost than
	

set
� � � � � � � // discard �

else // else calculate new relative value of �

set relative value	 � RV
� � � 	 ��

else if � � � then set ��� 	
// if there is no critical item,

	
is critical�

if � �� � then // if there is a critical item� // then consider the critical item solution
set
 � the item in � from the same candidate subset as �
if � � � � � ��� �� � ���� � � � � � � � � and � � � � � ������� � ����� � then

set � � � � �
if
� � � or (

� � � and
���
)� otherwise

� � � ��
end

Figure 22: Full greedy algorithm for the MCKP.

3.5. FULL ALGORITHM 75

a b

c d

e f

1/2

4/6

3/4

8/9

8/7

7/4
1/1

3/2

2/2
6/3

7/7

3/4

7/6 2/1 1/2

4/6

3/4

8/9

2/2

7/7

3/4

1/2

4/6

3/4

8/9

2/2

3/4

1/2

4/6

3/4

8/9

8/7

7/4
1/1

3/2

1/3

8/7

7/4
1/1

3/2

1/3

8/7

7/4
1/1

3/2

1/31/2

1/2

4/6

3/4

8/9

8/7

7/4
1/1

3/2

1/3 1/2

4/6

3/4

8/9

8/7

7/4
1/1

3/2

Figure 23: Example execution of the full MCKP algorithm. This example
shows the operation of the full MCKP algorithm for an instance of the MCKP with
8 items (shown as profit/cost pairs) partitioned into 2 candidate subsets (circles),
and with a knapsack size of 10. (a) Initially the lowest cost item from each subset is
selected (bold items). Arrows lead to the available replacement items, labeled with
the relative values of those items with respect to the currently selected item from
that subset. The greatest relative value, 2.0, is shared by two replacement items:
7/4 and 3/2. The algorithm arbitrarily chooses 7/4, replacing 1/1 with 7/4 and
discarding 3/2 since it has lower cost than 7/4. The relative value of the remaining
item, 8/7, is updated. (b) 8/9 has greatest relative value but cannot be afforded, so
it is discarded. (c) 3/4 has greatest relative value and can be afforded, so it replaces
1/2. (d) 4/6 has greatest relative value and can be afforded, so it replaces 3/4. (e)
8/7 is the only remaining item but cannot be afforded, so it is discarded. (f) The
algorithm’s solution is 4/6 and 7/4, for a total profit of 11. The critical item is 8/9,
and the critical item solution is 8/9 and 1/1, with a total profit of 9.

76 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

items from the same candidate subsets. These items are IP-dominated (see Section 3.2) and must be

removed in a reduction preprocess phase [49]. The algorithm also assumes that no infeasible items

exist that are not elements of any feasible solution (because their cost is too high to allow them to be

selected with any combination of other items). These infeasible items can also be removed during

the reduction phase.

The complexity of the algorithm is
��� � � � � � � � , where � is the number of candidate subsets and

� is the number of items in the largest subset. In an efficient implementation of the algorithm, each

candidate subset may be stored as a separate list. If the subset lists are stored in arbitrary unsorted

order then a pointer is associated with each one marking the item in that subset with greatest relative

value. After the selection of an item, redundant items are removed by traversing the list and deleting

any items with lower cost than the newly selected item. In the same traversal, the relative values

of the remaining items are recalculated. After the update traversal the index is updated to point to

the item with highest relative value. The complexity of the entire update step is
��� � � , where �

is the size of the largest candidate subset. The search for the item with greatest relative value from

any subset involves traversing the list of the best items from each subset, pointed to by the indices

associated with the subsets. The complexity of this is
��� � � , where � is the number of subsets. Each

candidate item must be considered exactly once. Therefore the complexity of the entire algorithm

is
��� � � � � � � � .

Note that the average size of the candidate subsets is inversely proportional to the number of

candidate subsets � . In the worst case either � or � may be equal to � , in which case the other is

obviously equal to 1. In this worst case the complexity of the algorithm is
��� � � � . Intuitively, the

selection of each of the � items involves the comparison of up to � candidate subsets (in the case

where � � �) or up to � items within one candidate subset (in the case where � � �). We note

however that in this worst case MCKP actually degenerates into simpler problems: 0-1 KP, in the

case when ��� � , and the selection of a single item from a set of candidates in the case where
� � � . In typical practical problems neither � or � is close to � , so that the average complexity is��� � � � � � � � .

The complexity of the reduction phase is
��� � log � � [49]. It may be incorporated into the

initialization of the greedy algorithm itself.

3.6. PROOF OF HALF-OPTIMALITY FOR THE FULL ALGORITHM 77

3.6 Proof of Half-Optimality for the Full Algorithm

In Section 3.5 we presented a second and more complex greedy algorithm for the MCKP. In this

section we prove that that algorithm’s solution to the MCKP is always at least half as good as the

optimal solution. Unlike the proof for the simplified algorithm presented in Section 3.4, this proof

does not depend on the convexity assumption introduced in Section 3.2. The proof is an extension

of the earlier proof, and follows the same six-step general plan (see Section 3.4). While steps 1, 4,

5 and 6 are identical to those in Section 3.4, steps 2 and 3 are complicated by the added complexity

of the second algorithm.

A key feature of the simplified algorithm is that the items in each candidate subset are always

considered in ascending order of profit and cost and descending order of relative value. In the case

of the full algorithm this is no longer true, since items are sometimes selected out of ascending cost

order within the same subset. When this occurs, any items with lower cost from that subset are

simply discarded (see Section 3.5). We say that these items are implicitly selected and immediately

replaced by the more expensive explicitly selected items. The following Lemma shows that the

items in each subset that are explicitly selected are selected in descending order of relative value:

Lemma 3.1 If � � � � � � � � � � � � � ��� are elements of the same candidate subset
� � such that ��� ���

is selected explicitly by the algorithm as the replacement for � � for all of
� � � � � � � � � � � � � � � then

the relative value of ��� ��� with respect to ��� is greater than the relative value of � � ��� with respect

to ��� ��� : �
	 	 �
� �
	 	��	 	 �
� ��	 	 � �
	 	 �

� �
	 	 ���	 	 �
����	 	 �

� � � � � � � � � � � � � � � �

Proof:

For any three consecutive items � � � ��� ��� � ��� ��� in � � � � � � � � � � � � � ��� we know that ��	 	 ���	 	 �
� ��	 	 � (by definition of the algorithm) and that � 	 	 � �
	 	 �

� �
	 	 � (because of

the dominance of items with lower profit and greater cost by other items from the same candidate

subset). Furthermore we know that � � ��� was selected as the replacement for � � and ��� ��� was

not, so �
	 	 �
� �
	 	��	 	 �
����	 	 � �
	 	 �

� �
	 	��	 	 �
����	 	 �

Therefore, by considering the triangle formed by � � � ��� ��� � ��� ��� (see Figure 24) we deduce that�
	 	 �
� �
	 	 ���	 	 �
����	 	 �

� �
	 	 �
� �
	 	��	 	 �
����	 	 �

78 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

mi+1

mi+2

mi

w

p

Figure 24: Triangle formed by � � � ��� ��� and ��� ��� . Given that the relative value
of ��� ��� with respect to ��� is greater than or equal to the relative value of � � ���

with respect to ��� (and knowing that ��	 	 � ��	 	 �
� ��	 	 � and �
	 	 � �
	 	 �

��
	 	 �) we deduce that the relative value of � � ��� with respect to ��� ��� is less than
or equal to the relative value of � � ��� with respect to ��� . The slopes of the lines in
the graph represent visually the relative values of items with respect to other items.
For example, the relative value of � � ��� with respect to ��� is shown by the slope of
the line from ��� to ��� ��� .

3.6.1 Proof

1. Given an instance of the MCKP, let the profit of the optimal solution to this instance be	 . Let
�

be the set of items in the intermediate solution reached by the greedy algorithm

immediately before the critical item is considered (and rejected), and let 	 � � � � � � � � be the

profit of this partial greedy solution.

Recall that both the optimal solution and the intermediate greedy solution
�

must contain

exactly one item from every candidate subset. Therefore the profit of the optimal solution is

equal to the profit 	 � of the partial greedy solution
�

plus, for each candidate subset
� � , the

difference between the profits of the item
 � � � � which is in the optimal solution and the

item � � � � � selected in
�

: 	 � 	 � � ��
� �� � ��� � � � � � � �

Therefore 	
� 	 � � �
� � �

� ��� � � � � � � � �� � � � � � � � ��� � � (25)

3.6. PROOF OF HALF-OPTIMALITY FOR THE FULL ALGORITHM 79

where � is the set of candidate subsets for which
 � has greater cost (and profit) than � � ,
and � is the set of candidate subsets for which � � has greater cost (and profit) than
 � . In

other words, � contains those candidate subsets in which the algorithm selected “less” than

it should have, and � contains those where it selected “more” than it should have.

2. In this step we consider the candidate subsets
� � that are in � . Recall that these are those

for which the item
 � � � � in the optimal solution has greater cost than the item � � � � �
selected in

�
. As in the simplified proof, we show that in such cases the item
 � in the

optimal solution must have lower relative value (with respect to � �) than the critical item �
(with respect to the item
 from the same subset as � , that is selected in

�
). This follows from

the fact that � was chosen for selection and
 � was not.

When the critical item � was chosen for selection (and rejected) the set of currently selected

items was exactly
�

. Therefore the critical item was considered as a replacement for some

item
 that is an element of
�

, and was chosen instead of selecting
 � as a replacement for

� � (which would have been possible, since the full algorithm considers not only the items of

immediately higher cost). Therefore
 � has lower relative value with respect to � � than � does

with respect to
 : ��� � � � � �� � � � � � � � �� � ����� ����� � � � � � (26)

3. In this step we consider the candidate subsets
� � that are in � . Recall that these are those

for which the item
 � � � � in the optimal solution has lower cost than the item � � � � �
selected in

�
. As in the simplified proof, we show that in such cases the item � � in

�
must

have greater relative value (with respect to
 �) than the critical item � (with respect to
). This

follows from the fact that � � was chosen for selection before � .
When the critical item � was chosen for selection (and rejected) the set of currently selected

items was exactly
�

. Therefore there must exist a sequence
	 � � 	 � � 	 � � � � � � 	 � of elements

of
� � from
 � to � � such that

	 � ��� is explicitly selected as the replacement for
	 � for all of� � � � � � � � � � � � 	 � � . This step is complicated by the fact that, in the full MCKP algorithm,

some items are never explicitly selected (but only implicitly selected). We know that � � is

explicitly selected (since � � � �), but
 � may have been implicitly selected by the selection

of another element of
� � of higher cost than
 � . Therefore let

	 � be the highest cost explicitly

selected element of
� � such that ��� �

� � � � � , and let
	 � � � � . Note that ��� �

� � � � .
�
In the case where � � is explicitly selected,

�
� is � � itself.

80 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

There must also exist a sequence of items � � � � � � � � � � � � � ��� in the candidate subset con-

taining � and
 leading from the selection of the cheapest item in that subset to the selection

of
 , where � � is the cheapest item in the candidate subset, ��� � � , ��� � � �
 , and ��� ��� is

selected explicitly by the algorithm as the replacement for � � for all of
� � � � � � � � � � � � � � �

.

Note that ��� is not selected as the replacement for ��� �
� , because ��� (ie. �) is not selected

at all.

Since � was chosen for selection after � � , for every
	 � in the sequence

	 � � 	 � � 	 � � � � � � 	 � �
�

there must exist an item ��� in the sequence � � � � � � � � � � � � � ��� �
� such that��� 	 �

� ��� 	��� 	 �
� ��� 	 � �� � �
	 ���� ����	 � � (27)

From Lemma 3.1 we know that the items in � � � � � � � � � � � � � ��� are in descending order of

relative value, and therefore that�
	 	 �
� �
	 	��	 	 �
����	 	 � �
	 �

� �
	
�
�

���	
�
� ��	

�
�

�

� � ��� � � � � � � � � � � �
Rewriting, �
	 	 �

� �
	 	��	 	 �
����	 	 � �� � ����� ����� � � ��� � � � � � � � � � � �

Therefore, since �� � �
	 ���� � ��	 � � � � � ��
� � �
	 	 �
� �
	 	 �� � � ��
� � ��	 	 �
����	 	 � �

we know that �� � �
	 ���� ����	 � � �� � ����� � ��� �
Therefore, from (27), ��� 	 �

� ��� 	��� 	 �
����� 	 � �� � ����� ����� � � ��� � � � � � � 	 � � � �

Then since ��� � � ���
���� � �����

�

� � � � �� �� � ��� 	 �
� ��� 	 �� � � �� �� � ��� 	 �
� ��� 	 �

we know that ��� � � ���
���� � �����

�

� �� � ����� � ��� �

3.6. PROOF OF HALF-OPTIMALITY FOR THE FULL ALGORITHM 81

Substituting � � with
	 � , we have shown that the relative value of � � with respect to

	 � is at

least as high as the relative value of � with respect to
 :� � � � ��� �� � � ����� �

�
�� � ����� ����� � (28)

Now if
 � is explicitly selected (that is, if
	 ���
 �) then by substitution into (28) it follows

that the relative value of � � with respect to
 � is at least as high as the relative value of � with

respect to
 (which is what we wanted to show in this step):� � � � ��� �� � � ��� � � � �� � ����� � ��� � � � � � (29)

Otherwise if
 � is selected implicitly by the explicit selection of
	 � then

	 � ��
 � and

���
�
� � � ��� ���

� �

Then, since the algorithm selected
	 � over
 � as a replacement for

	 � ,���
�
� ���

����
�
� ���

�

� ��� � � ���
�� � � � ���

�

�

Therefore, by considering the triangle formed by
	 � � 	 � and
 � (Figure 25) we deduce that the

relative value of
	 � with respect to
 � is at least as high as the relative value of

	 � with respect

to
	 � : ���

�
� ��� ����

�
� � � � � ��� �

� ���
����

�
� ���

�

�

Then, since � � � � ��� �� � � � � � � � � � � � � ��� �
� � � ���

�
� ��� � �� � � � � ��� �

� � � ���
�
� � � � �

and � � � � ��� �� � � ����� �

� � � � � � ��� �
� � � ���

�
� ���

�
�� � � � � ��� �

� � � ���
�
� ���

�
�

we know that � � � � ��� �� � � � � � � � � � � � ��� �� � � ����� �

�

That is, the relative value of � � with respect to
 � is at least as high as the relative value of � �
with respect to

	 � . Therefore, from (28),� � � � ��� �� � � ��� � � � �� � ����� � ��� � � � � � (30)

82 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

w

p

o
k

j 2

j1

Figure 25: Triangle formed by
	 � �
 � and

	 � . Given that the relative value of
	 �

with respect to
	 � is greater than or equal to the relative value of
 � with respect to	 � (and knowing that ��� �

� � � �
� ���
� and ��� �

� ��� � � ���
�) we deduce that the

relative value of
	 � with respect to
 � is greater than or equal to the relative value

of
	 � with respect to

	 � .

4. Therefore, from (25), (26) and (30) we have

	 � 	 � � �
� � �

� � � � ��� � � � �� � ����� � ��� � �� � � � � � � � � � � � �� � ����� ����� (31)

� 	 � � 	
 �
� � �

� � � � ��� � � � � �� � � � � � � ��� � � � � �� � ����� � ��� (32)

� 	 � � ��
� �� � � � � ��� � � � �� � ����� ����� � (33)

5. Let � � � � � � � � � � be the space left in the knapsack after the selection of
�

, immediately

before the rejection of the critical item � . From the fact that � was rejected we know that the

difference in cost between � and
 is greater than � :
� � ��� ����� � (34)

Furthermore we know that the total difference in cost between the items in the optimal solu-

tion and the items from the same candidate subsets in the greedy solution must be less than

or equal to � :
��
� �� � � � � � � � � ��� � �

3.7. ADVANTAGES AND LIMITATIONS 83

Therefore, from (34),
��
� �� � � � � ��� � � � � ��� ����� � (35)

6. Therefore, from (33) and (35),

	 ��	 � � � ��� � ��� � �� � ����� ����� (36)��	 � � �� � �� (37)��	 � � �� � (38)

Recall that the greedy algorithm compares the total profit of the final greedy solution (which

is greater than or equal to 	 �) to the total profit 	 � of the cheapest solution containing the

critical item (which is clearly greater than ���), and keeps whichever solution is better. That

is, the algorithm’s solution has profit 	
 � max
� 	 � � �� � . Therefore, from (38),

	
 �
�

�
	

and the profit of the algorithm’s solution is guaranteed to be at least half the profit of the

optimal solution.

3.7 Advantages and Limitations

Having proved that the solution of the full algorithm is always at least half-optimal, in this section

we show that in the majority of practical cases its solution is much better than half-optimal. The

same arguments apply to the simplified algorithm, for the subproblem of the MCKP in which the

convexity assumption holds.

Recall that the maximum error of the algorithm is bounded by ��� � �� (see equation 37). This

means that as the granularity of the candidate items (with respect to the total size of the knapsack)

becomes finer, the maximum error tends to zero. The algorithm can be expected to perform much

better than half-optimal for MCKP instances in which the granularity of the items is relatively fine,

and pathological cases arise only when the difference in profit between � and
 is a significant

proportion of the optimal solution value 	 . �
We note that in level of detail applications especially it is rare that a single item or group of

items will contribute a large proportion of the total profit of the optimal solution. In most level of

A similar observation is made for other Knapsack Problem heuristics in [21].

84 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

detail applications hundreds or even thousands of scene objects are visible at the same time and each

contributes a relatively small proportion to the total visual effect. The half-optimality guarantee is a

worst-case figure and we expect the behaviour of the algorithm to be much better than half-optimal

in most real-world applications.

Recall that the simplified algorithm depends on the convexity assumption for its half-optimality.

However the IP-dominance of items with lower profit and greater cost than other items from the

same candidate subset imply that the worst-case half-optimality of the algorithm is broken only

for instances in which there exist items of greater cost and profit but lower relative value than

other items from the same subset. These items are those that do not provide diminishing returns.

Real world problem instances in which increased outlays do not provide diminishing returns are

uncommon, as they tend to simplify the problem. All else being equal, we would always choose to

select a more expensive item over less expensive ones that provide proportionately poorer returns.

In level of detail situations it is rare that a more expensive representation of an object will provide

proportionately greater perceptual benefit than a cheaper one. For example the successive addition

of more polygons to a mesh representation of an object generally results in progressively smaller

increases in visual quality, particularly if the additions are made in an intelligent “most significant

first” fashion.

Note that in the case of the Continuous Multiple Choice Knapsack Problem C(MCKP) (see

Definition 2.4 in Section 2.5.2) “concave” items — items that provide lower relative value than

other more expensive items from the same candidate subset — are LP-dominated and can be re-

moved from consideration completely [49]. A solution containing an LP-dominated item can be

improved trivially by replacing that item with a linear combination of two items that lie on the con-

vex boundary. By contrast the inability to select fractional portions of items in the MCKP means

that these items must still be considered on the off chance that the items that dominate them cannot

be afforded. The convexity assumption normally has no effect; non-convex items can be ignored

completely except in the cases where the lowest cost items with cost greater than theirs for which

the graph is convex are critical or post-critical. Therefore the simplified algorithm can be expected

to perform well in most practical cases.

3.8 Comparison with Funkhouser-Séquin Algorithm

In this section we compare our greedy algorithms for the MCKP with that proposed by Funkhouser

and Séquin (see Sections 2.5.4 and 2.6.1). In particular we discuss the practical implications of our

3.9. INCREMENTAL VERSION 85

algorithm’s proved correctness.

Recall from our discussion in Sections 2.5.4 and 2.6.1 that Funkhouser and Séquin proposed

a greedy algorithm for the MCKP and pressed it into service (in an equivalent incremental form)

as a non-hierarchical level of detail optimization algorithm. Recall also that in Definitions 2.5 and

2.6 we presented counterexamples for the claimed half-optimality of the Funkhouser-Séquin MCKP

algorithm and incremental level of detail optimization algorithm.

Apart from the fact that our greedy algorithm always selects a feasible solution consisting of

exactly one item from each subset, the main difference between our algorithm and theirs is that our

algorithm is based on relative value rather than value. This is the feature that guarantees the half-

optimality of our algorithm (for a simplified subproblem, in the case of the simplified algorithm).

As we described in Section 3.1, the idea behind it is that the choice of which item to replace is based

on the relative desirability of the potential replacement items (with respect to the items they would

replace) rather than on their absolute value. This allows our algorithm to avoid inappropriately

replacing items with other items that provide slight improvements in profit at the expense of much

greater increases in cost when other replacement items, with lower absolute value but higher relative

value, are available.

Examples of practical level of detail situations in which this may occur, as we noted in Sec-

tion 2.6.1, are those in which objects have low detail impostor representations of barely significant

cost that closely resemble their expensive high detail representations. For example, the low detail

impostor might be a single texture mapped polygon and the high detail impostor a complex model

consisting of hundreds of polygons. In these cases the higher detail impostors of objects provide

slight increases in profit at the expense of dramatic increases in cost, and if they are selected the

rendering time wasted is unavailable for improved renderings of other objects. Our algorithm is

capable of taking this into account and favouring replacements of lower value but higher relative

value instead, should they be available. The expensive representations are not ignored completely

but are selected only when their selection is appropriate.

3.9 Incremental Version

Recall that our interest in efficient approximation algorithms for the MCKP arises from the fact that

the MCKP is equivalent to the non-hierarchical level of detail optimization problem (as described

in Chapter 2). The main limitation of our MCKP greedy algorithm, in this regard, is that it performs

86 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

a complete optimization from scratch for every frame, and so fails to exploit the considerable co-

herence that typically exists between successive frames. A more effective approach is to modify the

algorithm to accept as input an initial best-guess solution derived from the previous frame.

Recall from Section 2.6.1 that Funkhouser and Séquin [24] propose an incremental version of

their MCKP greedy algorithm that they claim is equivalent to it for the subproblem of the MCKP

in which items with higher cost than other items from the same candidate subset always have lower

value. This constitutes a value-based convexity assumption that is analogous to our relative-value-

based one (introduced in Section 3.1). It is this assumption that allows their algorithm to be made

incremental: it guarantees that the solution found by considering all items in descending order of

value is the same as that found by considering, at each stage, only the items of immediately higher

cost than those that are currently selected (from each candidate subset). This is because the items

of immediately higher cost are guaranteed to have values that are at least as high as later (more

expensive) items from the same subset and can therefore safely be assumed not to falsely poorly

advertise them. If the convexity assumption does not hold then the incremental algorithm runs the

risk that by considering and not selecting only the immediately higher cost items at each stage it

will miss more expensive items that represent far better choices.

Recall that we showed in Section 2.5.4 that the Funkhouser-Séquin non-incremental MCKP

greedy algorithm is not guaranteed half-optimal (even for the subproblem in which the value-based

convexity assumption holds; note that the second counter example, presented in Definition 2.6,

satisfies it). Likewise we showed in Section 2.6.1 that their equivalent incremental algorithm suffers

from the same limitation.

In the same way that the value-based convexity assumption of Funkhouser and Séquin allows

their greedy MCKP algorithm to be made incremental, so our relative-value-based convexity as-

sumption allows our simplified algorithm to be made incremental. This is an important advantage

of the simplified algorithm that provides another reason to prefer it for level of detail optimization.

For this reason we choose to extend the simplified version in later chapters and have presented the

full algorithm only for completeness.

We do not present the incremental version of our simplified MCKP algorithm here; rather we

note that it is to our greedy algorithm what the Funkhouser and Séquin incremental algorithm is

to theirs, and describe instead (in Chapter 7) an incremental version of a greedy algorithm for

the hierarchical level of detail optimization problem that is a hierarchical extension (presented in

Chapter 6) of our simplified MCKP greedy algorithm.

Note that while Funkhouser and Séquin exploit their value-based convexity assumption in the

3.10. SUMMARY 87

making of their incremental algorithm, they do not formulate a simplified version of their MCKP

algorithm designed to act more efficiently on a simplified subproblem. We exploit both benefits of

the convexity assumption by formulating a simplified algorithm that is half-optimal as long as the

assumption holds and then an incremental version that is equivalent to the simplified algorithm. The

fact that the same convexity assumption provides both benefits is a fortunate coincidence, although

of course the reason is the same in both cases.

3.10 Summary

In this chapter we presented a greedy approximation algorithm for the Multiple Choice Knapsack

Problem (MCKP). This algorithm is based on a metric, relative value, that measures the profit

density of candidate items with respect to other items from the same candidate subset. The relative

value metric allows our algorithm to gauge effectively the “desirability” of items as replacements

for previously selected items, thereby coping with the characteristic constraint of the MCKP that

exactly one item must be selected from every candidate subset.

We proved that our algorithm’s solution is always at least half as good as the optimal solution,

and showed that the performance of the algorithm is much better than half-optimal in typical in-

stances of the MCKP in which the granularity of the candidate items is fine with respect to the size

of the knapsack. The time complexity of our algorithm is
��� � � � � � � � . The greedy algorithm,

like that for the 0-1 KP described in Chapter 2, represents a compromise between optimality and

efficiency. It provides a generally non-optimal solution of a guaranteed quality to an NP-complete

problem in exchange for manageable polynomial time complexity.

In addition we presented a simplified version of the algorithm that exploits an assumption, called

the convexity assumption, about the nature of the MCKP. We proved that this simplified algorithm’s

solution is always at least half-optimal for instances of the subproblem of the MCKP defined by

the convexity assumption and showed that the convexity assumption is satisfied in the majority of

useful problem instances. This simplified algorithm has a lower time complexity of
��� � log ��� and

has the important additional advantage that it may be made incremental. This means that it may

be modified to create an equivalent incremental algorithm that accepts as input an initial best-guess

solution derived from the application of the algorithm to the previous problem instance. This allows

the algorithm to exploit coherence between successive problem instances.

In later chapters we will put the advantages of the simplified algorithm to use in order to propose

an incremental hierarchical level of detail optimization algorithm that is an extension of it. In the

88 CHAPTER 3. GREEDY ALGORITHM FOR THE MCKP

meantime the next chapter, Chapter 4, presents a formal definition of a hierarchical level of detail

description to serve as a basis for an investigation of the hierarchical level of detail optimization

problem.

Chapter 4

Hierarchical Level of Detail

Optimization

In Chapter 2 we described how the Multiple Choice Knapsack Problem (MCKP — see Section

2.5.2) had been shown to be equivalent to the level of detail optimization problem. Recall that in

Section 2.6 we showed that this equivalence is broken by hierarchical level of detail descriptions

with shared representations for groups of objects (such as those described by Maciel and Shirley

[47], Chamberlain et al [14] and Shade et al [75]). We demonstrated that the few predictive hier-

archical level of detail optimization schemes presented so far (namely those of Maciel and Shirley

[47] and Belblidia et al [8]) have failed to address this problem completely. In this chapter we con-

struct a basis on which to formulate our work by presenting a formal and very general definition of a

hierarchical level of detail description and identifying the level of detail optimization problem that

this description presents. We call this problem the hierarchical level of detail optimization problem.

If the characterizing feature of level of detail scene descriptions is that multiple representations,

or impostors, may be provided for scene objects, the characterizing feature of hierarchical level of

detail descriptions is that shared representations may be provided for groups of objects. The advan-

tage of this is that rendering cost may be saved by the rendering of simple shared representations

for groups of unimportant objects, while still providing a complete scene representation in which

group object representations are coherent and consistent. Furthermore, hierarchies naturally allow

the representation of the complex hierarchical structure of typical real-world scenes. Our definition

attempts to capture these important characteristics.

Recall from Chapter 2 that the equivalence between the non-hierarchical level of detail opti-

mization problem and the MCKP captures the idea that exactly one drawable representation must

89

90 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

be selected for each scene object. In contrast when an object in a hierarchical level of detail de-

scription is represented by a shared group representation of one of its ancestors, all of the objects

which share that representation must necessarily be represented by it as well, as shown previously in

Figure 12. There is no facility for taking this into account in the formalism of the Multiple Choice

Knapsack Problem, where the selected items of distinct candidate subsets (corresponding to the

selected impostors of distinct objects) are chosen independently. In this chapter we demonstrate

that the level of detail optimization problem for a hierarchical level of detail description (which we

shall refer to as the hierarchical level of detail optimization problem) is equivalent instead to a hier-

archical generalization of the Multiple Choice Knapsack Problem in which the selection of items is

limited by a hierarchy of constraints. We characterize this Hierarchical Multiple Choice Knapsack

Problem formally in Section 4.2. In Chapter 5 we shall also present a new formalism for reasoning

about such problems.

We begin in Section 4.1 by defining our level of detail hierarchy. In that section we will define

hierarchical generalizations of useful concepts such as levels of detail and the incrementations and

decrementations between them. In Section 4.2 we present a transformation of the hierarchical level

of detail description defined in Section 4.1 to an equivalent constrained non-hierarchical one in

which explicit constraints take the place of the implicit constraints represented in the structure of the

hierarchy. We refer to this transformation in order to show the equivalence of the hierarchical level

of detail optimization problem to the Hierarchical Multiple Choice Knapsack Problem. In Section

4.3 we revisit the hierarchical level of detail optimization algorithm of Maciel and Shirley (first

discussed in Section 2.7.1) in light of this insight, evaluating its solution in terms of the Hierarchical

MCKP. Finally we conclude this chapter in Section 4.4.

4.1 Hierarchical Level of Detail Description

An object is defined recursively as consisting of other objects that are its children or parts. The

entire scene is represented by a hierarchy of such objects whose root is called the scene object.

Each object may optionally be provided with a set of impostors, or drawable representations, that

represent it and therefore all of its parts. The leaf objects must each be provided with at least one

impostor. Where multiple impostors are associated with a single object, they are ordered uniquely

according to increasing detail. The impostors of the parts of objects together form more detailed

representations of those objects. Figure 26 shows an example of a simple level of detail hierarchy.

Note that this definition of a hierarchical level of detail description is fairly general. All of

4.1. HIERARCHICAL LEVEL OF DETAIL DESCRIPTION 91

1 2

4 5 6 7

3

8

scene object

impostors

Figure 26: Simple level of detail hierarchy. Objects are represented by circles,
and their impostors by triangles. The multiple impostors of each object are shown
in order of increasing detail from left to right. The impostors of the descendants of
each object constitute higher levels of detail of parts of that object. Impostors are
numbered for convenience.

the hierarchical level of detail descriptions used by previous level of detail schemes (reviewed in

Section 2.4) can be viewed as specialized instances of this description; in all of them shared simple

representations (and sometimes multiple shared simple representations) are provided for groups

of related objects. Different hierarchical descriptions differ from each other in the types of scene

objects to which the “objects” in the hierarchy correspond, the ways in which they are combined to

form group objects, the types of drawable geometric descriptions comprising the impostors, and the

number of impostors allowed for each object.

4.1.1 Levels of Detail

We define a formal hierarchical generalization of the concept of a level of detail. Objects have

multiple hierarchically defined levels of detail consisting of both their own explicit impostor repre-

sentations and the implicit representations consisting of the combinations of the impostors of their

descendants. Each level of detail corresponds to a unique set of selected impostors:

Definition 4.1 Level of Detail

A level of detail � of an object
�

is a set of impostors � � � � � � � � � � � � � � � � � . The impostors� � � � � � � � � � � � � � � are selected such that exactly one of the impostors on the path from
�

to each

of the leaves of the subtree rooted at
�

is an element of � .

92 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

For example a valid level of detail of the scene object in Figure 27 is the set of impostors� � � � � � � . This definition ensures that each level of detail of an object provides some complete and

unambiguous representation of every part of that object; be it one of its associated impostors or a

subset of the impostors of its descendants. In addition objects that are parts of other objects may

also be represented instead by the impostors of their ancestors.

4.1.2 Replacement Sets

We define the replacement set of an impostor to refer to the set of impostors that constitute the

immediately higher detail representation of the object that owns that impostor:

Definition 4.2 Replacement Set

The replacement set of an impostor
�

belonging to an object
�

is:

1. The immediately higher detail impostor of
�

, if one exists.

2. The set of the lowest detail impostors of the nearest impostor-bearing descendants of
�

,

otherwise.

Figure 27 illustrates examples of various replacement sets in a simple level of detail hierarchy.

All impostors have exactly one replacement set, except for the highest detail impostors of the leaves

of the hierarchy, which have none. Conversely every impostor is an element of exactly one replace-

ment set. The impostors which together constitute the lowest level of detail of the object are assumed

to be the replacement set of an imaginary “root” impostor corresponding to no representation.

4.1.3 Incrementation and Decrementation

We define an incrementation of a level of detail � of an object
�

to be the replacement of some im-

postor
� � � by its replacement set � . Conversely a decrementation of � is the replacement of some

complete replacement set � � � by the impostor
�

whose replacement set is � . In general a level

of detail � may be incremented and decremented in many different ways, where each corresponds

to the replacement of a different impostor or replacement set in � .
4.1.4 Partial Ordering of Levels of Detail

The levels of detail of each object are partially ordered by the following relation:

4.1. HIERARCHICAL LEVEL OF DETAIL DESCRIPTION 93

1 2

4 5 6 7

3

8

1 2

2 4 53

5 6

3 7 8

Figure 27: Examples of replacement sets. The replacement set of impostor 1 is� � �
, and that of impostor 2 is � � � � � � � . The replacement set of impostor 5 is � � �

and that of 3 is � � � � �
. Impostors 4, 6, 7 and 8 have no replacement sets, and � � � is

the replacement set of an imaginary impostor no representation.

Definition 4.3 Partial Ordering of Levels of Detail

Two levels of detail � and
 of an object
�

are related by � �
 if there exist levels of detail
� � � � � � � � � � � � � � � such that

� � � � , � � �
 , and
� � ��� is the result of some incrementation of

� � for all� ��� � � � � � � � � � � � � � � .
If � �
 and � ��
 then we say that � is a strictly lower level of detail of

�
than
 . The lowest

and highest levels of detail of an object are those such that there exist no levels of detail that are

strictly lower and strictly higher, respectively. Figure 28 illustrates the partial ordering of levels of

detail.

(a) (b) (c) (d)

Figure 28: Partial ordering on levels of detail. Four levels of detail of a sim-
ple level of detail hierarchy. Level of detail � is the lowest level of detail of the
hierarchy, and � is the highest. Levels of detail

�
and � are related to � and � by

� � � � � and � � ��� � . However
�

and � are not related: although they are not
equal, neither is a higher or lower level of detail than the other.

94 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

Even if a level of detail � of an object
�

is strictly lower than another level of detail
 , � and

may still share some impostors in common. If they do not, then we say that � is uniformly lower

than
 :

Definition 4.4 Uniformly Lower Levels of Detail

A level of detail � of an object
�

is uniformly lower than another level of detail
 of
�

if � �

and � �
 ��� .
4.1.5 Covering of Replacement Sets

In the case of non-hierarchical level of detail descriptions there is a sense in which a particular

level of detail of the whole description may contain a higher or lower detail impostor of a particular

object than one of that objects other impostors. We say that an impostor
�

of an object
�

is covered

by some level of detail � of the entire description if the impostor of
�

contained in � is greater than

or equal to
�
. This terminology is useful in comparing levels of detail with impostors of particular

objects. We can define a similar concept in the case of hierarchical level of detail descriptions, but

we must talk of replacement sets rather than of impostors, and of the levels of detail of objects rather

than of the entire description:

Definition 4.5 Covering of Replacement Sets

Let � be the replacement set of some impostor of an object
�

. We say that � is covered by a

level of detail � of some ancestor
�

of
�

if there exists a level of detail
 of
�

such that
 � � and

 contains � .

More simply, � is covered by � if there exists a lower level of detail
 containing � . In that case,

� can be reached by a series of incrementations from
 , during which � is replaced by its higher

detail representation embodied in
 .

4.1.6 Ancestor and Descendant Replacement Sets

Lastly, we define two terms that reflect a partial ordering of replacement sets:

Definition 4.6 Ancestor Replacement Sets

We say that a replacement set � is an ancestor replacement set of another replacement set �
if there exists a (possibly empty) list of replacement sets � � � � � � � � � � � � � � � such that � � � � ,

� � � � , and � � ��� is the replacement set of some impostor in � � for
� ��� � � � � � � � � � � � � � � .

4.2. HIERARCHICAL MULTIPLE CHOICE KNAPSACK PROBLEM 95

Definition 4.7 Descendant Replacement Sets

� is a descendant replacement set of � if � is an ancestor replacement set of � .

In the example shown in Figure 27, � � � � � � � is a descendant replacement set of � � �
and an

ancestor replacement set of � � � and � � � � �
. Note that all replacement sets are trivially ancestors and

descendants of themselves.

4.2 Hierarchical Multiple Choice Knapsack Problem

In the hierarchical level of detail scene description defined in Section 4.1, each group (or non-leaf)

object is the union of its parts, or children. Therefore impostors of group objects are essentially

shared representations of all of the parts of those group objects. By our definition they function as

lower detail representations of those parts than any of the impostors that are explicitly associated

with the parts themselves. We may therefore redraw the hierarchy equivalently by transforming

group object impostors into shared low-detail impostors of their children, as long as we note that

the shared impostors are constrained and must be selected in unison for all of the parts, if at all (see

Figure 29).

transform

1

2 3 1 2 1 3

Figure 29: Transformation of a group object impostor. Impostors of group
objects may be equivalently regarded as shared impostors of the children of those
group objects. For clarity, each object is assumed to have exactly one impostor,
impostors are numbered, and the inherited impostor of the group object is shaded.
The link attached to the shared impostor indicates that the objects which share it
must take it on in unison.

By repeatedly applying this transformation we may create an “empty” or flat hierarchy with im-

postors only at the leaves (see Figure 30). Each leaf has as its impostors all of its own impostors plus

a series of lower detail impostors inherited in top-down order from its ancestors in the hierarchy. The

equivalence is subject to a set of constraints, one for each original group impostor: the leaf objects

96 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

that share each inherited group impostor must take on that shared impostor in unison. The resulting

flat hierarchy is essentially a hierarchically constrained non-hierarchical level of detail description

(Section 2.6), exactly equivalent to the original hierarchical one. The immediately higher impostors

of the objects that share each inherited group impostor together constitute the replacement set of

that impostor.

transform

1

3

4 5 6 7 8

2

1 1 1 12 2 2 23 34 5 6 7 8

Figure 30: Transformation of a simple level of detail hierarchy. The impostors
of group objects have all been transformed into shared impostors of the leaf objects.
The constraints between shared impostors, shown as links, imply that the objects
which share those impostors must take them on in unison.

Using the transformation described above, we can now show that the hierarchical level of detail

optimization problem is equivalent to a hierarchical generalizationof the Multiple Choice Knapsack

Problem, shown conceptually in Figure 31. We refer to this constrained MCKP as the Hierarchical

Multiple Choice Knapsack Problem, in reference to the fact that the constraints are hierarchical

in nature and make explicit the implicit constraints represented by the structure of a hierarchical

level of detail description. The candidate items correspond to the impostors of the objects in the

equivalent non-hierarchical description, and are divided into candidate subsets such that each subset

corresponds to the impostors of a single object. At most one item may be selected from each

candidate subset.

4.2. HIERARCHICAL MULTIPLE CHOICE KNAPSACK PROBLEM 97

The Hierarchical MCKP differs from the usual MCKP in that some items are members of more

than one candidate subset: those which correspond to shared group impostors in the non-hierarchical

description. These correspond to impostors of more than one object, and their corresponding items

are capable of representing several candidate subsets at a time. The hierarchical structure of the

constraints corresponds, in our case, to the hierarchical structure of the level of detail description.

Note that the standard MCKP is a special case of the Hierarchical MCKP, just as a non-hierarchical

level of detail description is a special case of the more general hierarchical level of detail description.

The Hierarchical MCKP is therefore NP-complete.

selection

candidate
subsets

knapsack

1 2
5

1 3

6

1
3

72

2
8

4
2

1

4
6

3

Figure 31: Hierarchical Multiple Choice Knapsack Problem. The Hierarchical
MCKP is identical to the MCKP except that some candidate items are elements of
more than one candidate subset. These shared items are constrained and may only
be selected together. Compare with Figure 7.

We define the replacement set of an item in an instance of the Hierarchical MCKP to correspond

exactly to the replacement set of the impostor in the hierarchical level of detail description to which

the instance corresponds. The items in the replacement set correspond to the impostors in the

replacement set of the corresponding impostor.

The definition of the Hierarchical MCKP is identical to that of the MCKP given in Definition

2.3 (See Section 2.5.2) except that the candidate subsets are not necessarily disjoint. We allow each

item to have a single replacement set and require that for every candidate subset of which an item

is an element, exactly one item in its replacement set must be an element of that subset. In addition

we require that all replacement sets are disjoint.

Definition 4.8 The Hierarchical Multiple Choice Knapsack Problem

Given a set
�

of � candidate items, a set of � candidate subsets
� � � � � � � � � , and a knapsack,

98 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

with

����� profit of item
	

����� cost of item
	

��� capacity of the knapsack

maximize 	
� ��� �� ��� ���
subject to ��� �� ��� ����� �

�� � ��� ����� � ��� ��� � � � � � � � �
������� � � � ��� 	 � �

� � � � � � � � � � � � �	
� �� � �

and where the root item
 � � � � � � � � � � � � � has a replacement set � � where the replacement set

of an item
�

is a set of items � � � � � � � � � � � � � � � � � � � 	 � such that:

1. For each candidate subset
� � of which

�
is an element, there exists exactly one item

	 � � �
that is an element of

� � .

2. Each item
	 � � � may or may not have a replacement set.

3. All replacement sets are mutually disjoint.

4.3 Maciel-Shirley Algorithm Revisited

Having produced a formal description of the hierarchical level of detail optimization problem in the

form of the Hierarchical MCKP defined in Section 4.2, we are now in a position to reconsider more

critically the hierarchical level of detail optimization algorithm of Maciel and Shirley [47], which

we discussed earlier in Section 2.7.1. Being a predictive level of detail optimization algorithm for

a hierarchical level of detail description similar to that defined formally in Section 4.1, it is an

4.3. MACIEL-SHIRLEY ALGORITHM REVISITED 99

approximation algorithm for the hierarchical level of detail optimization problem and therefore for

the Hierarchical MCKP.

The main characterizing feature of the Maciel and Shirley algorithm is that is also a greedy

algorithm. Whereas we in our greedy algorithm for MCKP use relative value (Section 3.1) and

Funkhouser and Séquin use value (Section 2.5.4), Maciel and Shirley use profit, which they refer to

as importance. Essentially the algorithm considers replacement sets as replacements for the items

that they replace, favouring those replacement sets that represent more important objects. The profit

of an impostor, for the purposes of replacement selection, is the importance of the object owning

that impostor. The importance of an object in turn is defined for group objects as the importance of

their most important part. The importance of leaf objects is defined as a weighted average of several

factors intrinsic to objects such as their screen-space size, distance from the line of sight, relative

speed and inherent semantic importance. This favouring of more detailed representations of more

important objects constitutes a “best-first” [47] greedy selection of replacement sets. Care is taken

to ensure the consistency and completeness of the solution (and therefore the scene representation)

by selecting initially a single impostor representing the entire scene and replacing impostors with

replacement sets that collectively represent exactly the same objects.

However, as we showed in Section 2.7.1, the algorithm of Maciel and Shirley is flawed and

places no guarantee on the quality of its solution. This failing is a direct result of the use of profit

(or importance) as the greedy heuristic rather than value (or more precisely, as we showed for the

MCKP in Chapter 3 and shall show for the Hierarchical MCKP in Chapter 6, relative value). For

any optimization problem any number of greedy heuristics are available; for example selection by

maximum profit, minimum cost, maximum value and, as we have shown, maximum relative value.

In the case of the 0-1 KP, only selection by maximum value is effective. It succeeds because it takes

into account both profit and cost, selecting items that provide the best combination of the two. In the

case of MCKP, as we saw in Chapter 3, selection by maximum relative value is the most successful

heuristic, since it takes into account the profits and costs of not only the replacing item but also the

replaced item. In the case of the Hierarchical MCKP, just as in the 0-1 KP and MCKP, selection

by maximum profit is not the most effective heuristic. In Chapter 6 we show that the heuristic of

choice is a hierarchical extension of relative value.

100 CHAPTER 4. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION

4.4 Summary

In this chapter we have presented a formal definition of a generalized hierarchical level of detail

description. This description is characterized by the fact that multiple shared representations may

be provided for groups of related scene objects. Our formalized definition captures the levels of

detail that such a hierarchical description can reflect, and the nature of their ordering. Furthermore

we have derived operations, incrementation and decrementation, that transform one level of detail to

another, and terms that allow us to speak about the relationships between levels of detail and object

representations.

Having defined formally a hierarchical level of detail description, we showed how such a de-

scription can be transformed to an equivalent constrained non-hierarchical one in which group

object impostors are explicitly shared between the parts of those group objects. The constraints

on shared impostors implied by the original hierarchical structure are represented explicitly in the

form of constraints. We demonstrated, by referring to this equivalent constrained non-hierarchical

description, that the hierarchical level of detail optimization problem is equivalent to a hierarchical

generalization of the Multiple Choice Knapsack Problem, which we call the Hierarchical Multiple

Choice Knapsack Problem. This Hierarchical MCKP differs from the conventional MCKP in that

candidate items may belong to more than one candidate subset. In the following chapters we will

derive formalisms for dealing with the Hierarchical MCKP.

Chapter 5

Level of Detail Graphs

In Chapter 4 we presented a formal description of a generalized hierarchical level of detail descrip-

tion whose characterizing feature is that multiple shared drawable representations, or impostors,

may be provided for groups of scene objects. It is clear that such hierarchical level of detail de-

scriptions give rise to large numbers of levels of detail that are the valid combinations of selecting

impostors from within the hierarchy and differ from one another by the selection or deselection of

particular impostors. These levels of detail are connected to one another by incrementations and

decrementations that function as transformations from one level of detail to another. Each hierarch-

ical description gives rise to its own state space of levels of detail, which can be visualized as a

connected graph. In particular it is a lattice, due to the partial ordering on levels of detail derived in

Section 4.1.4.

In this chapter we investigate these level of detail state spaces and provide a formalism in which

they can be analyzed. We introduce the concept of a level of detail graph as a means of represent-

ing (visually, semantically and automatically in computer programs) the state spaces generated by

hierarchical level of detail descriptions.
�

We will make use of these level of detail graph descrip-

tions in Chapter 7 where we use them to prove the equivalence of two hierarchical level of detail

optimization algorithms.

In Section 5.1 we provide an overview of level of detail graphs in their basic form. We expand

on this by discussing the level of detail graphs of non-hierarchical level of detail descriptions in

Section 5.2 and then hierarchical descriptions in Section 5.3. Finally we conclude the chapter in

�

Note however that these level of detail graph representations may be applied equally well to the special case of purely
non-hierarchical level of detail descriptions, where they form a special regular case of the more general irregular level of
detail graphs.

101

102 CHAPTER 5. LEVEL OF DETAIL GRAPHS

Section 5.4 with a summary of the major points.

5.1 Level of Detail Graphs

A level of detail graph consists of a set of nodes, a set of arcs connecting those nodes, and a partial

ordering on the nodes. Each node corresponds to a level of detail, or state. It is connected by arcs to

all of the other nodes whose corresponding levels of detail may be reached from that one by means

of a single incrementation or decrementation. The partial ordering � that was defined for levels of

detail (Definition 4.3) is also applied to the nodes of the associated level of detail graph. We require

that any two distinct nodes � and
 such that � is strictly lower than
 are always represented in the

graph such that � is lower (visually) than
 .

5.2 Non-Hierarchical Level of Detail Descriptions

We first consider the level of detail graphs generated by non-hierarchical level of detail descriptions.

Recall from Section 2.6 that a non-hierarchical level of detail description is a scene description in

which multiple drawable representations may be provided for each scene object, but no shared

representations may be provided for groups of objects. In these descriptions the replacement set

of an impostor is always simply the immediately higher impostor of the same object, if one exists

(See Definition 4.2 in Section 4.1.2). The level of detail graphs generated by non-hierarchical

descriptions are all regular lattices — or grids — in � dimensions, where � is the number of objects

in the scene. The number of nodes on each side of the lattice corresponds to the number of impostors

of each object respectively, and the total number of nodes is the product of the numbers of impostors

of all objects. Figure 32 shows some example non-hierarchical level of detail descriptions and the

level of detail graphs that they generate.

Notice that arcs on opposite sides of the same square in the lattice correspond to the selection

(or deselection, in the case of decrementation) of the same replacement set. Any two paths between

the same two nodes involve the same series of replacements, although the ordering of the series is

unique to each path.

5.3. HIERARCHICAL LEVEL OF DETAIL DESCRIPTIONS 103

21 53 4 6 7 8

(c)

3,6,8

1,4,7

21 43

(b)

2,4

2,3 1,4

1,3

1 2

1,2

(a)

Figure 32: Level of detail graphs of non-hierarchical descriptions. Three sim-
ple non-hierarchical level of detail descriptions, numbered (a) to (c), and their cor-
responding level of detail graphs. Some nodes are unlabed in (c) for clarity.

5.3 Hierarchical Level of Detail Descriptions

We now consider the level of detail graphs of hierarchical level of detail descriptions. These level

of detail graphs differ from those of non-hierarchical descriptions in that they are not regular � -

dimensional lattices. Recall from Section 4.2 that any given hierarchical level of detail description

may be transformed to an equivalent constrained non-hierarchical one. The constraints in the con-

strained non-hierarchical description serve to limit the possible levels of detail of that description.

5.3.1 Single Constraint

The effect of introducing a single constraint is a well-defined change in the structure of the level of

detail graph, as shown in Figure 33. A constraint removes all the states that contain only some, but

not all, of the impostors that it constrains. Any arcs incident to a removed state are also removed.

The states that remain are those that contain none or all of the constrained impostors. New arcs

are created from each of the states containing all of the constrained impostors to the states that are

identical except for the replacement of the shared impostor by its replacement set. Recall that the

replacement set of a shared impostor consists of the immediately higher impostors of the linked

objects in the constrained non-hierarchical description (Section 4.2). The algorithm that applies the

effects of a constraint on a level of detail graph is given in Figure 34. It is assumed in the description

of the algorithm that the constraint being applied corresponds to a shared group impostor in a valid

hierarchical level of detail description of the type defined in Chapter 4.

104 CHAPTER 5. LEVEL OF DETAIL GRAPHS

21 53 4 6

3,6

1,4

2,5

1,5

1,6

2,4

3,4

3,5 2,6

Figure 33: Effects of a single constraint. The effects of the application of a single
constraint (on impostors 1 and 4) to a non-hierarchical level of detail description
on the level of detail graph of the description. Removed states and arcs are shown
with dotted lines. Note the addition of a new arc between state 1,4 and state 2,5.

Figure 35 compares the effects of two single constraints applied to a simple non-hierarchical

level of detail description. Figure 35 (a) shows the original unconstrained description and its level

of detail graph. (b) shows the result of linking the lowest impostors of the three objects (impostors

1, 4 and 7) by a single constraint, and (c) shows the result of constraining the lowest impostors of

only the first two objects (impostors 1 and 4).

5.3.2 Multiple Constraints

Typical hierarchical level of detail descriptions are equivalent to constrained non-hierarchical de-

scriptions with more than one constraint, such as that in Figure 30. There are nonetheless certain

requirements that are satisfied by any constrained non-hierarchical description that is equivalent to

a valid hierarchical description:

1. Each impostor may be constrained by at most one constraint.

2. Each constraint may constrain at most one impostor of each object.

3. If an impostor of an object is constrained then all of the lower detail impostors of that object

must also be constrained (since if an impostor is an inherited group impostor then all lower

impostors of that object are also inherited group impostors).

4. If
�

and � are constraints on consecutive impostors of an object then
�

and � must constrain

consecutive impostors on any object constrained by � , in the same order.

5.3. HIERARCHICAL LEVEL OF DETAIL DESCRIPTIONS 105

input: a level of detail graph
�

input: a set of impostors
�

that are subject to the new constraint
input: � , the replacement set of the group impostor corresponding to

�

output: the new level of detail graph
�

begin
for each level of detail � in

��
// if � contains some but not all of the impostors in

�
then

// remove � from the level of detail graph

if
� � � ���� and

� � � ���� then
remove � and all arcs incident to � from

�
// if � contains all the impostors in

�
then create an arc from � to
 ,

// the level of detail reached from � by replacing
�

with �
if

� � � then�
set
 � � � � � � � �
create a new arc from level of detail � to level of detail
 in

���
end

Figure 34: The constraint algorithm. The constraint algorithm takes as input a level of detail
graph

�
, a set of impostors

�
that are subject to the new constraint, and the replacement set � of

the group impostor corresponding to
�

. Its output is the level of detail graph after application of the
constraint.

106 CHAPTER 5. LEVEL OF DETAIL GRAPHS

(a) (b) (c)

1,4,7

3,6,9

21 53 4 6 7 8 9 21 53 4 6 7 8 9

1,4,7

3,6,9

2,5,8

21 53 4 6 7 8 9

1,4,7

3,6,9

2,5,7

1,4,9

1,4,8

Figure 35: Comparison of the effects of two single constraints. The effects of
two single constraints applied to a simple non-hierarchical level of detail descrip-
tion. The unconstrained non-hierarchical description and its regular 3-dimensional
level of detail graph are shown in (a). In (b) the lowest impostors of the first two
objects are constrained, and in (c) the lowest impostors of all three objects.

The level of detail graph of any constrained non-hierarchical description that is equivalent to

a valid hierarchical one may be generated by beginning with the graph of the unconstrained non-

hierarchical description and applying the Constraint Algorithm of Figure 34 for each constraint

in turn, in increasing order of detail of the impostors they constrain. The algorithm is shown in

Figure 36.

Figure 37 shows an example hierarchical level of detail description, its equivalent constrained

non-hierarchical description, and the generation of its corresponding level of detail graph.

5.4 Summary

Since we have introduced the novel notion of the Hierarchical Multiple Choice Knapsack Problem

in Chapter 4, we have had to derive new methods of reasoning about the implications of hierarchical

level of detail descriptions for level of detail optimization. In this chapter we have presented a new

representation, called level of detail graphs, of the state spaces of hierarchical level of detail scene

descriptions. This representation is general and may be applied to any hierarchical level of detail

description or scene description that is described by the formal definition given in Chapter 4. We

have provided algorithms for the generation of the level of detail graphs of arbitrary hierarchical

5.4. SUMMARY 107

input: a non-hierarchical level of detail description
input: a set of constraints to be applied
output: the level of detail graph

�
of the constrained description

begin
// begin with the level of detail graph of the unconstrained description
// and apply the Constraint Algorithm for each constraint in order

set
� � level of detail graph of the unconstrained description

for each object
�

of the non-hierarchical description
for each impostor

�
of
�

from lowest to highest
if there exists a constraint

�
containing

�
then

if constraint
�

has not already been applied then
set

� � result of applying
�

to
�

using the Constraint Algorithm
end

Figure 36: Level of detail graph generation algorithm. Algorithm to generate the level of detail
graph of an arbitrary constrained non-hierarchical level of detail description (and therefore of a
hierarchical level of detail description).

level of detail descriptions. These level of detail graph representations and their generation algo-

rithms serve equally well for the representation of the state spaces of non-hierarchical descriptions,

where they are a simpler special case.

Applications for these level of detail graph representations include the investigation of the be-

haviour and functionality of hierarchical and non-hierarchical level of detail optimization algo-

rithms. They function as a graphical and semantic notation to visualize and simulate more easily

the operation of such algorithms, which may be viewed as traversals of the level of detail graphs

generated by their level of detail descriptions.

In the next chapter we return our attentions to the hierarchical level of detail optimization prob-

lem, devising a greedy approximation algorithm for the Hierarchical Multiple Choice Knapsack

Problem based on the simplified greedy algorithm for the MCKP that we presented in Chapter 3.

108 CHAPTER 5. LEVEL OF DETAIL GRAPHS

1,4,7

3,6,9

1,4,7

3,6,9

2,5,7

1,4,9

1,4,8

1,4,7

3,6,9

2,5,7

1,4,9

1,4,8

3,6,8

3,6,7

constraint
(1,4)

constraint
(2,5)

21 43 5 6 7 8 9

transform

1/4 2/5

3 6

7 8 9

Figure 37: Level of detail graph of a hierarchical level of detail description. A
hierarchical level of detail description, its equivalent constrained non-hierarchical
description, and the generation of its level of detail graph. We begin with the graph
of the unconstrained non-hierarchical description and apply the constraints � � � � �
and � � � � � in that order. Impostors are numbered uniquely in the constrained non-
hierarchical description for clarity. Group objects in the hierarchical description
are numbered with the numbers of the shared impostors to which they correspond.

Chapter 6

Greedy Algorithm for the Hierarchical

MCKP

In this chapter we present a greedy approximation algorithm for the Hierarchical Multiple Choice

Knapsack Problem that we introduced in Chapter 4. In the description of the algorithm we make

use of the concept of replacement sets that we defined in Section 4.1.2 for impostors and in Section

4.2 for items in the Hierarchical MCKP.

This greedy algorithm for the Hierarchical MCKP is a hierarchical extension of the simplified

greedy algorithm for the conventional MCKP presented in Chapter 3. We prove that its solution

to the Hierarchical MCKP is guaranteed to be at least half-optimal (in terms of total profit) for

instances of a subproblem of the Hierarchical MCKP in which more detailed representations provide

diminishing returns. The time complexity of the algorithm is
��� � log ��� with respect to the number

of candidate items.

We begin in Sections 6.1 and 6.2 by defining hierarchical versions of the relative value metric

and the convexity assumption defined previously in Chapter 3. In Section 6.3 we present the algo-

rithm, and in Section 6.4 we prove its correctness. We discuss the limitations and advantages of

the algorithm in Section 6.5, showing that, like the greedy algorithm for the MCKP presented in

Chapter 3, its expected error is typically very small. In Section 6.6 we introduce the idea of making

the algorithm incremental. Finally we close the chapter in Section 6.7 with a summary of the major

points.

109

110 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

6.1 Hierarchical Relative Value

In Chapter 3 we defined a metric called relative value that measured the desirability, or relative

profit density, of items relative to other items of the same candidate subset that they might replace

(see Section 3.1). This relative value metric was put to use in the greedy algorithms for the MCKP

described in Chapter 3. Recall that in general the relative value of an item may be defined relative to

any other item from the same candidate subset, but because our simplified MCKP algorithm always

considers the candidate items in each subset in ascending order of cost, in the case of that algorithm

relative value was always defined relative to the immediately lower cost item from the same subset.

Likewise in this algorithm for the Hierarchical MCKP we invariably measure the relative value

of more expensive representations with respect to immediately less expensive ones. Recall from

Chapter 4 that we defined the replacement set of an item in the Hierarchical MCKP to be the set

of items that, in a sense, together constituted its immediately higher detail representation. Here we

define a hierarchical version of relative value which measures the desirability of replacement sets

relative to the items that they replace:

Definition 6.1 Relative Value of a Replacement Set

The relative value of the replacement set � of an item
�

is measured with respect to
�

and is

defined as follows:

RV
� � � � � � � � � ��� � � � �� � � � � ��� � ��� �

The relative value of replacement set � provides a measure of the advantage gained by using it

to replace the item
�

that it replaces, and is used to compare replacement sets against replacement

sets of other items. This is measured as the ratio of the differences in total profit and cost between

the replacement set � and the replaced item
�
. The relative value measure enables us to gauge the

desirability of potential replacement sets, just as the non-hierarchical relative value metric allowed

us to measure the desirability of replacement items in Chapter 3.

6.2 Hierarchical Convexity Assumption

Our algorithm assumes for its half-optimality that the replacement set of an item will always have

greater total cost than that item and lower relative value than the replacement set (if any) of which

that item is an element (See Figure 38). If this requirement is satisfied by an instance of the Hier-

archical MCKP, then the algorithm’s solution to that instance is guaranteed to be half-optimal, as

6.3. GREEDY ALGORITHM 111

we shall demonstrate in Section 6.4. This requirement is a hierarchical version of the convexity

assumption introduced in Section 3.2.

1 2

4 5 6 7

3

8

1 2

2 4 53

5 6

3 7 8

Figure 38: The hierarchical convexity assumption. Our algorithm requires for
its half-optimality that replacement sets should always have lower relative value
than the replacement sets (if any) containing the candidate items that they replace.
In this example, this implies that the replacement set � � � � � � � has lower relative
value than the replacement set � � �

(that is,
�
� �
�
� �
�
� � � � � �

� 	 �
� 	 �

� 	 � � � 	 �

� � � � � �	 � � 	 �), and re-
placement sets � � � and � � � � �

both have lower relative value than � � � � � � � .
The convexity assumption is likely to be satisfied in many instances of the Hierarchical MCKP

that arise in level of detail optimization. It implies that higher detail representations of objects must

provide increased perceptual benefit at the expense of increased rendering cost, with diminishing

returns for increasingly more detailed representations. We shall discuss this further in Section 6.5.

6.3 Greedy Algorithm

In this section we present our greedy algorithm for the Hierarchical MCKP, shown in Figure 39.

The algorithm accepts as input an instance of the Hierarchical MCKP and produces as output a

feasible solution to that instance. The algorithm begins with the simplest feasible solution and

iteratively replaces items with their replacements sets as far as the available cost will allow. It

maintains the feasibility of the solution by always replacing an item with its complete replacement

set and ensuring that replacement sets are only considered for selection when the items they replace

have already been selected. It maximizes the quality of the solution by favouring, when given the

choice, replacements that result in the greatest increase in profit for the smallest increase in cost. In

order to determine the most desirable replacements, the algorithm makes use of a simple selection

heuristic based on the hierarchical relative value metric defined in Section 6.1.

112 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

input: an instance of the Hierarchical MCKP (see definition 4.8)
output: a feasible solution to that instance

begin
set � � � � � � empty list // no critical replacement set yet, empty list
for each item

�
in the replacement set of no representation�

set � � � � // select the cheapest feasible solution
set � � the replacement set, if any, of

�
insert � into

�
in descending relative value order�

while
�

is not empty // while there are unconsidered replacement sets�
set � � the first replacement set in

�

set
� � the item whose replacement set is �

remove � from
�

if � � � � � � � ����� � � � � � � � � � � then // if we can afford to replace
�

with ��
set � � � � // unselect

�
for each item

	 � ��
set ��� � � // select every item in �
if
	

has a replacement set,
�

, then
insert

�
into

�
in descending relative value order��

else if � ��� then set � � � // if no critical replacement set yet, � is critical�
if � ���� then // if there is a critical replacement set� // then consider the critical solution

find � , the lowest cost critical replacement set solution
if � � � � � � � � � � � � � � � and � � � � � � � � then

set � � � � �
if
� � �� otherwise

�	� � ��
end

Figure 39: Greedy algorithm for the Hierarchical MCKP.

6.3. GREEDY ALGORITHM 113

The algorithm maintains a list of replacement sets currently available for selection, ordered by

descending relative value. It initially selects the imaginary root item (See Definition 4.8 in Sec-

tion 4.2) that has no profit and cost and is an element of every candidate subset, and inserts into

the replacement set list the replacement set of this item. It then greedily considers the remain-

ing replacement sets in order of descending relative value, using the replacement set list to ensure

that each replacement set is only considered after the item it replaces has been selected. While

the replacement set list is not empty, the algorithm considers the first replacement set in the list

for replacement, substituting it for the item it replaces if this replacement can be afforded. If the

replacement is made then the replacement set is removed from the replacement set list and the re-

placement sets (if any) of the items it contains are inserted into the list in descending relative value

order. Otherwise the replacement set is simply removed from the list and discarded. If it is the first

replacement set to be so discarded it is marked as the critical replacement set. At any stage the

replacement sets that are available in the replacement set list are those whose associated items are

currently selected, and they are considered in descending order of relative value.

When this greedy selection terminates (due to the replacement set list being found to be empty)

the solution reached is compared against the lowest cost feasible solution containing the critical

replacement set. If this critical replacement set solution has greater profit than the greedy selection

and has total cost less than or equal to the size of the knapsack then it is selected instead.

Finding the critical replacement set is simple: it is found as a by-product of the greedy selection

stage. Finding the lowest cost feasible solution containing the critical replacement set however

requires an iterative selection process similar to the greedy selection stage but taking no notice of

relative value orderings and selecting only replacement sets that represent candidate subsets that are

also represented by the critical replacement set. An algorithm for finding the lowest cost critical

replacement set solution is shown in Figure 40.

Our Hierarchical MCKP algorithm essentially favours the more detailed representations of se-

lected items whose more detailed representations have greatest relative value. These are those that

provide the greatest increase in profit for the smallest increase in rendering cost when replacing

their immediately lower cost representations. By considering more detailed representations in units

corresponding to replacement sets, the algorithm ensures that when a shared item is replaced it is

replaced completely by its entire replacement set. In this way the algorithm preserves the feasibil-

ity of the approximate solution, since every replacement set represents the same candidate subsets

as the item that it replaces. The algorithm therefore always produces a feasible solution in which

exactly one item is selected from each candidate subset.

114 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

input: an instance of the Hierarchical MCKP (see Definition 4.8)
input: the critical replacement set for that instance, �
output: the lowest cost feasible solution containing the critical replacement set

begin
set
� � empty list of replacement sets

for each item
�

in the replacement set of no representation�
set � � � � // select the cheapest feasible solution
set � � the replacement set, if any, of

�
append � onto the end of

��
while

�
is not empty // while there are unconsidered replacement sets�

set � � the first replacement set in
�

set
� � the item whose replacement set is �

remove � from
�

// if � represents all the replacement sets that � does
if there exists an item

	 � � � 	 � � � for every
� � � � � � � � for some

�
then�

set � � � � // unselect
�

for each item
	 � ��

set ��� � � // select every item in �
if
	

has a replacement set,
�

, then
append

�
onto the end of

����
end

Figure 40: Critical replacement set solution algorithm. This algorithm may be used to find the
cheapest feasible solution containing the critical replacement set, which is needed by the Hierarch-
ical MCKP algorithm of Figure 39.

6.4. PROOF OF HALF-OPTIMALITY 115

6.4 Proof of Half-Optimality

In this section we prove the half-optimality of the greedy algorithm described in Section 6.3, for

the subproblem of the Hierarchical MCKP in which the hierarchical convexity assumption holds

(see Section 6.1). Instances of this subproblem are those in which every replacement set has greater

profit and cost than the item it replaces and lower relative value than the replacement set (if any)

containing that item. We assume in this proof that those requirements are satisfied.

The proof is a hierarchical extension of that already provided for the simplified greedy algorithm

for the MCKP in Section 3.4. This proof differs from that for the simplified MCKP algorithm due

to the fact that in the Hierarchical MCKP we deal with replacement sets rather than replacement

items. Likewise relative value is defined for replacement sets (as described in Section 6.1) rather

than for relative items, and the proof takes this into account.

6.4.1 Overview of Proof

Like the proofs for the simplified and full MCKP algorithms presented in Sections 3.4 and 3.6, the

proof is composed of six steps:

1. We formulate an equation relating the profit of the optimal solution to that of an intermediate

stage in the greedy solution corresponding to the solution reached up to the consideration and

rejection of the critical item. This equation provides an upper bound on the maximum error

of the greedy algorithm and includes terms that quantify the profit gained by selecting items

that are not in the optimal solution and the profit lost by not selecting items that are.

2. We show that any replacement sets that are in the optimal solution but were not selected by the

greedy algorithm before the rejection of the critical replacement set must have lower relative

value than the critical replacement set, since they were not considered before it.

3. Similarly we show that any replacement sets that were selected by the greedy algorithm before

the rejection of the critical replacement set but are not in the optimal solution must at least

have higher relative value than the critical replacement set, since they were considered before

it.

4. Using the results of steps 2 and 3, we show that the maximum error of the greedy algorithm

is bounded by the total difference in cost between the optimal solution and the intermediate

greedy solution, multiplied by the relative value of the critical replacement set.

116 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

5. Then we show that the difference in cost between the optimal solution and the intermediate

greedy solution is bounded by the difference in cost between the critical replacement set and

the item that it would replace.

6. Substituting, we show that the maximum error of the intermediate greedy solution is bounded

by the difference in profit between the critical replacement set and the item that it replaces.

Recalling that the algorithm compares the total profit of the final greedy solution (which is

necessarily greater than the profit of the intermediate solution) to the profit of the cheapest

feasible solution containing the critical replacement set and keeps whichever is better, we

conclude that the algorithm’s solution is at least half as good as the optimal one.

6.4.2 Proof

1. Given an instance of the Hierarchical MCKP, let the profit of the optimal solution to this

instance be 	 . Let
�

be the set of items in the intermediate solution reached by the greedy

algorithm immediately before the critical replacement set is considered (and rejected), and let	 � � � � � � � � be the profit of this intermediate greedy solution.
�

Therefore 	
� 	 � � �� � � � � �� � � �

� � � � � � � � � �� � � � � �� � � �

� � � � � � � � (39)

where � � is the item whose replacement set is � � , � is the set of replacement sets that would

be selected in the process of selecting the optimal solution but were not selected in the process

of selecting
�

(those where the algorithm has “underselected”), and � is the set of those

replacement sets that were selected in the process of selecting
�

but would not be selected in

the selection of the optimal solution (where the algorithm has “overselected”).

2. In this step we consider the replacement sets that are in � . When the critical replacement set �
was considered (and rejected) the set of currently selected items was exactly

�
. Therefore the

critical replacement set was considered as the replacement for some item
 that is an element

of
�

, and was considered instead of some replacement set
�

that is the replacement set of

some item � � � and is an ancestor replacement set of � � . This implies that
�

has lower

�

In practice the algorithm may also select other later replacement sets, replacing items in � , but since every replace-
ment increases the total profit of the selected items (because of our assumptions in Section 6), we know that the profit of
the final greedy solution is greater than or equal to � 	 .

6.4. PROOF OF HALF-OPTIMALITY 117

relative value (with respect to �) than � (with respect to
):� � � � � � � � � � �� ��� � � � � � � � ����� �
Now because the replacement sets of items always have lower relative value than the replace-

ment sets containing those items (from the hierarchical convexity assumption — see Section

6.2) all the replacement sets in � must have lower relative value than � :� � � � � �
� � � � � � �� � � � � �
� � � ��� � �

� � � � � � � � � � ��� � � � � � � � � ��� � 	 � � � (40)

3. In this step we consider the replacement sets that are in � . When the critical replacement set

� was considered for selection (and rejected) the set of currently selected items was exactly�
. There must therefore exist a list of replacement sets

� � � � � � �
� � � � � � � � such that

� ��� � � ,
� � � �

, and
� � ��� is the replacement set of some item in

� � for all of
� � � � � � � � � � � � 	 � � .

Likewise there also exists a list of replacement sets
� � � � � � �

� � � � � � � � where
� � is the

replacement set of some item in the cheapest feasible solution,
� ��� � and

� � ��� the re-

placement set of some item ��� in
� � for all of

� � � � � � � � � � � � � � �
. Note that

� � is not

selected as the replacement for some item in
� �
�
� , because

� � (ie. �) is not selected at all.

Then we know that the algorithm at some stage replaced some item
	 � �

� in
� � �

� with
� �

instead of replacing some item ��� in
� � with

� � ��� , for some � � � � � � � � � � � � � � � � � ,
since

� � was selected and � was not. Therefore� � � � � � � � � � ��� � �
�� � � � � � � � � ����� � �

�

�
� � � � � �

�

� � � � �
	 �� � � � � �
�

� � � ����	 � �
Now because the replacement sets of items always have lower relative value than the replace-

ment sets containing those items (from the hierarchical convexity assumption — see Section

6.2) all the replacement sets in � must have greater relative value than � :� � � � � �
� � � � � � �� � � � � �
� � � � � � �

�
� � � � � � � � � ��� � � � � � � � ����� � 	 � � � (41)

4. Therefore, from (39), (40) and (41) we have	 ��	 � � �� � � � � �� � � �

� � � ��� � � � � � � � � � � � � ��� � � � � � � � � ��� � �� � � � � �� � � �

� � � � � � � � � � � � � � � � � ��� � � � � � � � � ���
��	 � � 	
 �� � � � � �� � � �

� � � � � � � � � �� � � � � �� � � �

� � � � � � � � � � � � � � � � � � ��� � � � � � � � ����� � (42)

118 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

5. Let � � � � � � � � � � be the space left in the knapsack after the selection of
�

, immediately

before the rejection of the critical replacement set � . From the fact that � was rejected we

know that the difference in cost between � and
 is greater than � :� � � �
� � �
� � � ����� � (43)

Furthermore we know that the total difference in cost between the optimal solution and the

intermediate greedy solution
�

must be less than or equal to � :�� � � � � �� � � �

� � � ��� � � � � �� � � � � �� � � �

� � � ��� � � ��� � �
6. Therefore, from (43),�� � � � � �� � � �

� � � ��� � � � � �� � � � � �� � � �

� � � ��� � � ��� � �
� � �

� � � ����� (44)

and so, from (42) and (44),	 ��	 � � � � �
� � �
� � � ����� � � � � � � � � � � ��� � � � � � � � ����� (45)

��	 � � � �
� � �
� � � � �� (46)

��	 � � �
� � �
� � � (47)

Recall that the greedy algorithm compares the total profit of the final greedy solution (which

is greater than or equal to 	 �) to the total profit 	 � of the cheapest solution containing the

critical item, and keeps whichever solution is better. That is, the algorithm’s solution has

profit 	
 � max
� 	 � � 	 � � . Clearly 	 � � � � � � � � , so 	
 � max

� 	 � � � � � � � � � . Therefore, from

(47),

	
 �
�

�
	

and the profit of the algorithm’s solution is guaranteed to be at least half the profit of the

optimal solution.

6.5 Advantages and Limitations

Recall that in Section 3.7 we noted that the maximum error of the simplified MCKP greedy algo-

rithm was in fact bounded by the profit of the critical item, and argued that the typical behaviour of

6.6. INCREMENTAL VERSION 119

the algorithm was therefore much better than half-optimal. Here we make a similar argument for the

Hierarchical MCKP algorithm. Note that the maximum error of the greedy algorithm is bounded

by the difference in profit between the critical replacement set and the item it replaces (see equation

(46)). Therefore as the granularity of the candidate items with respect to the knapsack becomes

finer, the maximum error of the algorithm tends to zero. In practical level of detail applications the

performance of the algorithm can be expected to be much better than half-optimal. Pathological

cases arise only when the difference in total profit between � and
 is a significant proportion of the

optimal solution value 	 .
Recall that just as its ancestor the simplified greedy algorithm for MCKP described in Chapter

3 depends on the non-hierarchical convexity assumption, the algorithm depends on the hierarchical

convexity assumption (Section 6.2) for its half-optimality. Its solution to instances of the Hierarch-

ical MCKP that do not satisfy the hierarchical convexity assumption may be less than half-optimal

in the worst case. The hierarchical convexity assumption implies that more expensive selections

must provide increased profit at the expense of increased cost, with diminishing returns for increas-

ingly more expensive selections. These requirements are likely to be satisfied in most real-world

applications. Level of detail problems in which more expensive renderings do not provide diminish-

ing returns are uncommon. For example the successive addition of more detail to a polygonal mesh

model generally results in progressively smaller improvements in visual perception. Therefore the

half-optimality guarantee is a worst case figure and the algorithm can be expected to perform well

in most practical level of detail applications.

The complexity of the greedy algorithm is
��� � log ��� . The number of replacements made

is
��� ��� in the number of candidate items (and hence in the number of replacement sets). Each

replacement involves the deletion of the replacement set at the head of the list, which is
��� � � , and

the in-order insertion of (we assume)
��� � � new replacement sets, each at the expense of

���
log ���

complexity. The complexity of the greedy selection stage is therefore
��� � log ��� . After the greedy

selection stage the critical item solution must be found. The complexity of this is
��� ��� . The entire

algorithm is therefore
��� � log ��� .

6.6 Incremental Version

Like the simplified greedy algorithms for the MCKP presented in Chapter 3, the hierarchical MCKP

algorithm can be made incremental to take advantage of coherence between the optimal solutions

of successive problem instances. That is, it can be modified to take as input an initial approximate

120 CHAPTER 6. GREEDY ALGORITHM FOR THE HIERARCHICAL MCKP

solution that is typically derived from the most recent application of the algorithm. The fact that the

algorithm can be made incremental is a direct result of the hierarchical convexity assumption. We

provide an incremental hierarchical level of detail optimization algorithm based on this algorithm

in Chapter 7. That incremental algorithm is equivalent to this greedy algorithm for instances of the

Hierarchical MCKP for which the hierarchical convexity assumption defined in Section 6.1 holds.

6.7 Summary

In this chapter we have presented a greedy approximation algorithm for the Hierarchical Multiple

Choice Knapsack Problem introduced in Chapter 4. Our algorithm is half-optimal for a useful

subproblem of the Hierarchical MCKP and has a time complexity of
��� � log ��� . Furthermore

its worst case performance is significantly better than half-optimal for instances of the subproblem

in which the profits of the candidate items are small with respect to the total profit of the optimal

solution.

The algorithm may be made incremental to take advantage of coherence between the optimal

solutions of successive problem instances, and we will make use of this in the development of an

incremental hierarchical level of detail optimization algorithm in the next chapter, Chapter 7.

Chapter 7

Hierarchical Level of Detail

Optimization Algorithm

In this chapter we present our level of detail optimization algorithm. Our algorithm is incremen-

tal, hierarchical and predictive. It is an incremental version of the greedy approximation algorithm

for the Hierarchical Multiple Choice Knapsack Problem presented in Chapter 6, rewritten to exploit

frame-to-frame coherence for increased efficiency in practical level of detail applications. This basis

in an approximation algorithm for the Hierarchical MCKP gives the algorithm its truly hierarchical

nature with elegant support for multiple shared simplified representations for groups of related ob-

jects. In addition it implies that the algorithm is predictive and provides both guaranteed limits on

predicted rendering cost and guaranteed levels of predicted visual quality.

This incremental algorithm exploits frame-to-frame coherence by accepting as input an initial

solution that is the approximate solution found for the previous frame. Due to the typically large

amount of coherence between successive frames, the approximate solutions found for consecutive

frames are generally similar. Therefore the approximate solution is found more efficiently on av-

erage by the incremental algorithm than by the non-incremental greedy algorithm. In this way our

algorithm is similar to the incremental non-hierarchical level of detail optimization algorithm of

Funkhouser and Séquin (discussed in Section 2.6.1). It is equivalent to the greedy algorithm for the

Hierarchical MCKP presented in Chapter 6 for a useful subproblem. This is, by coincidence, the

same subproblem for which the greedy algorithm’s solution is at least half-optimal. Therefore the

algorithm produces an approximate solution that is guaranteed at least half as good as the optimal

solution, for the subproblem of the hierarchical level of detail optimization problem in which higher

levels of detail provide increased perceptual benefit but with diminishing returns. We prove the

121

122 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

equivalence of the algorithms for this subproblem formally in Section 7.2.

The incremental algorithm shares the advantages of the non-incremental algorithm of Chapter

6. It has a worst-case theoretical time complexity of
��� � log ��� , but is incremental and so has an

average time complexity close to
��� ��� . � The algorithm produces an approximate solution that is

guaranteed at least half as good as the optimal solution, for the subproblem of the hierarchical level

of detail optimization problem in which higher levels of detail provide increased perceptual benefit

but with diminishing returns.

Whereas the greedy algorithm of Chapter 6 was described in terms of the Hierarchical Multiple

Choice Knapsack Algorithm (that is, candidate items with profit and cost, partitioned into a number

of candidate subsets) this incremental algorithm will be described in terms of hierarchical level of

detail optimization (that is, impostors with perceptual benefit and rendering cost, each belonging to

a particular scene object).

The definition of efficient and accurate benefit and cost heuristics for use in the algorithm is itself

a tricky problem. However we are more interested in level of detail optimization algorithms than

in the problem of defining the heuristics themselves and so we assume that appropriate benefit and

cost heuristics exist that predict the perceptual benefit and rendering cost respectively of impostors

in any given viewing situation (see Chapter 2). In Chapter 9 we report on an experiment in which

some simple heuristics were evaluated.

The organization of this chapter is as follows. In Section 7.1 we present the algorithm. In

Section 7.2 we prove the equivalence of the incremental algorithm to the greedy algorithm for the

Hierarchical MCKP described in Chapter 6. In Section 7.3 we discuss the advantages and limitations

of the algorithm. In Section 7.4 we conclude the chapter with a summary of the important points.

7.1 Algorithm

The incremental hierarchical level of detail optimization algorithm, shown in Figure 41, is an equiv-

alent incremental version of the Hierarchical MCKP greedy algorithm described previously in Chap-

ter 6. Its advantage over that algorithm is purely one of efficiency: it exploits coherence by basing

its initial solution on the solution reached for the previous frame.

The algorithm is applied once per frame and its output is a level of detail of the scene object for

that frame. Its input is the level of detail selected for the previous frame
�

and a constant rendering

�

A detailed experimental evaluation of its practical complexity is presented in Chapter 9.
�

Or any valid level of detail, in the case of the first frame.

7.1. ALGORITHM 123

input: an instance of the hierarchical level of detail optimization problem
input: a feasible initial solution to that instance
output: a solution to that instance (in

�
)

begin
set
� � the initial solution

set done � FALSE
while done = FALSE�

// increment
�

, if possible

if
�

is not the highest level of detail then�
find

�
, the impostor in

�
whose replacement set has highest relative value

set � � the replacement set of
�

set
� � � � � � � � � � ��

// decrement
�

, while the total rendering cost is too high

while � � � � Cost
� � � � rendering cost limit�

find � � �
, the replacement set in

�
with the lowest relative value

set
	 � the impostor whose replacement set is �

set
� � � � � � � � � 	��

if � � � then
set done � TRUE��

end

Figure 41: The incremental hierarchical level of detail optimization algorithm.

124 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

cost limit that represents the rendering time available for this frame. The algorithm guarantees that

the total predicted rendering cost of the selected level of detail is lower than the rendering cost limit.

In addition it attempts to maximize the total predicted perceptual benefit (or profit) of the selection.

The algorithm is iterative, repeatedly incrementing and decrementing the selected level of detail

until the final solution is found. In each iteration the selected level of detail is incremented once, then

decremented repeatedly while the total rendering cost is greater than the rendering cost limit. Recall

that a level of detail may in general be incremented and decremented in many different ways. The

incrementation selected in each step is that which replaces the currently selected impostor whose

replacement set has the highest relative value. Conversely the decrementation selected is that which

deselects the currently completely selected replacement set with the lowest relative value.

The repeated iteration terminates when the incrementation and decrementation operations of the

same iteration select and deselect the same replacement set. When this occurs there is no further

work for the algorithm to do. After termination of the algorithm we render the impostors constituting

the selected level of detail. For simplicity the algorithm as shown assumes that the rendering cost

limit is sufficient to render at least the lowest level of detail but not great enough to render the

highest level of detail. The special cases in which these assumptions do not hold must be dealt with

by trivial tests before the algorithm begins. In such cases we select the lowest and highest levels of

detail, respectively.

Note also that the algorithm as described here does not consider the critical replacement set

solution (see Chapter 6), the cheapest feasible solution containing the critical replacement set. For

completeness the algorithm should, after termination of the iterative stage, compare the solution

reached against the critical replacement set solution and take whichever has greater total profit. In

the case where the iteration terminates due to the selection and deselection of the same replacement

set in a single iteration, the critical replacement set is the replacement set in question (since the

incremental algorithm is equivalent to the non-incremental one — as we show in Section 7.2 —

so all the replacement sets selected have higher relative value than it and all those not selected

have lower relative value than it). In the cases where the algorithm terminates due to running

out of possible decrementations or incrementations, the critical replacement set is either the first

replacement set or does not exist, respectively. Once the critical replacement set is known the

critical replacement set solution can be found using the algorithm presented previously in Figure 40

(Section 6.3).

In practice we believe that checking the critical replacement set solution is unnecessary for level

of detail optimization. Recall that the critical replacement set solution is the lowest cost feasible

7.2. EQUIVALENCE OF THE INCREMENTAL AND NON-INCREMENTAL ALGORITHMS125

solution containing the critical replacement set. Therefore in any instances in which the critical

replacement set solution has a higher total profit than the solution resulting from greedy selection,

the critical replacement set itself must have a profit that is large relative to the total profit of the

optimal solution. Such instances seem unlikely in level of detail optimization where the profit of

the individual impostors is likely to be small relative to the total profit of the optimal solution.

7.2 Equivalence of the Incremental and Non-Incremental Algorithms

In this section we prove that the incremental hierarchical level of detail optimization algorithm

described in this chapter is equivalent to the non-incremental greedy algorithm for the Hierarchical

Multiple Choice Knapsack Problem described in Chapter 6. We do this by using level of detail graph

representations (Chapter 5) of the state spaces of the incremental and non-incremental algorithms

to analyze their behaviour and show that their solution states are always identical.

Both algorithms, as we noted previously, are guaranteed to be half-optimal for well-defined

subproblems of their respective problems (the hierarchical level of detail optimization problem and

the Hierarchical MCKP). In addition they are only equivalent for these subproblems: if the re-

quirements of those subproblems are violated then the incremental algorithm is not equivalent to

the non-incremental algorithm and its output may differ from that of the non-incremental one. We

hence assume here that the requirements are met: that the replacement set of any impostor (or item)

has higher profit and cost than that impostor and lower relative value than the replacement set (if

any) containing that impostor.

In this proof we refer to the concepts of ancestor and descendant replacement sets, the covering

of replacement sets by levels of detail, and the incrementation and decrementation of one level of

detail to another. These concepts were introduced in Chapter 4.

7.2.1 Level of Detail Optimization as a Search Problem

Recall from Chapter 5 that each instance of a hierarchical level of detail description generates its

own particular level of detail graph. The hierarchical level of detail optimization problem may be

viewed as a search problem involving the traversal of the level of detail graph (from some initial

level of detail) in search of an optimal level of detail in which total profit is maximized while total

cost is limited. The operation of both the greedy algorithm for the Hierarchical MCKP and the

incremental hierarchical level of detail optimization algorithm may in turn be viewed as different

traversals in search of a solution state that is an approximation to this optimal state. Our aim in this

126 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

proof is to show that both algorithms reach the same solution state.

The greedy algorithm for the Hierarchical MCKP presented in Chapter 6 begins with the lowest

level of detail selected (that is, the lowest cost solution) and always increments from one level of

detail to another towards its final solution by replacing selected items with their replacement sets.

The currently selected item (or impostor) chosen for replacement in each step, we recall, is that

whose replacement set has greatest relative value. If the replacement can’t be afforded then that

replacement set is simply discarded. The greedy algorithm stops when it runs out of available

replacement sets – when it reaches a level of detail in which no further affordable replacements

exist. That level of detail is then its final solution.

The incremental hierarchical algorithm on the other hand begins with any arbitrary level of detail

selected (usually, the approximate solution found for the previous frame) and both increments and

decrements to reach its final solution. Each incrementation is the replacement of a currently selected

impostor with its replacement set and each decrementation is the replacement of a currently selected

replacement set with its associated impostor. In each iteration the impostor selected for replacement

during incrementation is that whose replacement set has greatest relative value and the replacement

sets selected for replacement during decrementation are those completely selected replacement sets

with lowest relative value. The incremental algorithm terminates when it reaches a level of detail in

which the selected incrementation is negated in the same iteration by its inverse decrementation.

The nodes of the level of detail graph are partitioned into two subsets by the available rendering

time: those whose cost is less than or equal to the limit and those whose cost is greater. Since it

is assumed that replacement sets always have higher cost than the items they replace, higher levels

of detail always have higher cost, so we can imagine the level of detail graph being cut into two

distinct self-contained parts by an imaginary surface. The optimal and approximate solutions must

all lie just below this surface. Figure 42 compares the actions of the incremental algorithm and

non-incremental greedy algorithm as traversals of a level of detail graph with respect to this surface.

Let the solution state found by the non-incremental greedy algorithm be called � . When the

incremental hierarchical algorithm is in a given state � and increments or decrements, there are

generally multiple distinct incrementations and decrementations available, each of which replaces

a different currently selected impostor or replacement set. In general, some of the incrementations

will select replacement sets that are covered (See Definition 4.5 in Section 4.1.5) by � but not by � ,
and others will select replacement sets that are covered by neither � nor � . Similarly decrementations

will generally be available that deselect replacement sets that are covered by � but not by � and

others that deselect replacement sets that are covered by both � and � . The central idea behind the

7.2. EQUIVALENCE OF THE INCREMENTAL AND NON-INCREMENTAL ALGORITHMS127

a

b
g

Figure 42: Level of detail optimization as a search problem. The non-
incremental greedy algorithm begins at the lowest level of detail (a) and increments
until it reaches a final solution (g). The incremental algorithm begins at the previous
frame’s solution (b) and both increments and decrements to reach (g). Also shown
is the imaginary cutting surface between the levels of detail whose cost is less than
or equal to the available rendering time (feasible solutions, shown with grey lines)
and those whose cost is not (infeasible solutions, shown with black lines).

proof is to show that the incrementations and decrementations chosen always serve to bring the

selected state � “closer” to � , by selecting whenever possible replacement sets that are covered by �
and deselecting ones that are not. By showing that the incremental algorithm terminates only upon

reaching � , we prove that the solution state of the incremental algorithm is also � .

7.2.2 Incrementation and Decrementation

In this section we prove two lemmas that together characterize the behaviour of the incremental

algorithm with respect to the final solution state � of the non-incremental algorithm, for all possible

states. To this end we partition the set of states into four distinct subsets, or classes, according to

their relation to � (See Figure 43). For any state � , exactly one of the following is true:

1. � � �

2. � � � (� is strictly lower than �)

3. � � � (� is strictly higher than �)

128 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

4. � and � are not comparable (we refer to this as � �� �).

The impostors and replacement sets referred to in the proofs of the lemmas are illustrated in

a simple example in Figure 43. This example consists for simplicity of the level of detail graph

of a simple non-hierarchical level of detail description with two objects. Note however that the

same arguments apply for complex level of detail graphs of arbitrary hierarchical level of detail

descriptions.

Lemma 7.1 Whatever its current state, the incremental algorithm will always choose an incremen-

tation selecting a replacement set covered by � , if one is available, over any that select replacement

sets not covered by � .

Proof:

1. In the case where the current state
 of the incremental algorithm is in the class � � � , all

possible incrementations select replacement sets covered by � and the proof is immediate.

2. In the case where
 is in class � � � or � � � all incrementations select replacement sets

covered neither by
 nor by � , and the proof is immediate.

3. In the case
 is in class � �� � , there must exist at least one incrementation from
 that selects

a replacement set
�

covered by � . At least one incrementation must select a replacement set
	

not covered by � (by definition of this class). There must exist a state
 �
from which the non-

incremental greedy algorithm chose an incrementation selecting
�

over one selecting another

replacement set
	 �

that is an ancestor replacement set of
	
. Replacement set

�
must therefore

have greater relative value than
	 �

. Since descendant replacement sets have lower relative

value than their ancestors,
	 �

has greater relative value than
	

and so
�

has greater relative

value than
	
. Therefore the incremental algorithm will choose the incrementation selecting

�
over that selecting

	
.

Lemma 7.2 Whatever its current state, the incremental algorithm will always choose a decremen-

tation deselecting a replacement set not covered by � , if one is available, over any that deselect

replacement sets that are covered by � .

Proof:

1. In the case where the current state � of the algorithm is uniformly higher than � , any decre-

mentation must deselect a replacement set not covered by � , and the proof is immediate.

7.2. EQUIVALENCE OF THE INCREMENTAL AND NON-INCREMENTAL ALGORITHMS129

s > g

s < g

gi

t

t’

j

u’

u

j’

q

p

p’

Figure 43: Partitioning of states. The partitioning of the set of states into four
distinct classes: � � � , � � � , � � � and � �� � (the shaded states), for a regular
2D level of detail graph. The dark arrows show, for this example, the path taken
by the non-incremental algorithm in reaching its final solution state � . The light
labels on rows of arcs name the replacement sets selected and deselected by all the
incrementations and decrementations represented by arcs in that row, and the light
arrows to the possible incrementations and decrementations mentioned in the text.

2. In the cases where � is in class � � � or � � � , no decrementations exist that deselect

replacement sets covered by � , so the proof is immediate.

3. In the case where � is either not comparable to � or strictly higher but not uniformly higher

than � , there must exist at least one decrementation from � that deselects a replacement set �
not covered by � . At least one decrementation from � must deselect a replacement set � that

is covered by � (by definition of this class). There must exist a state �
�

from which the non-

incremental greedy algorithm chose an incrementation selecting � over one selecting another

replacement set � �
that is an ancestor replacement set of � . Replacement set � must therefore

have greater relative value than � �
. Since descendant replacement sets have lower relative

value than their ancestors, � �
has greater relative value than � , so � has greater relative value

than � . Therefore the incremental algorithm will choose the decrementation deselecting �
over that deselecting � .

130 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

Together these lemmas show that the incrementations and decrementations performed by the

incremental algorithm serve, wherever possible, to bring the algorithm’s current state closer to the

final solution state of the non-incremental algorithm.

7.2.3 Actions of the Algorithm

Table 1 shows the actions of the incremental algorithm in any iteration for each state class. Firstly,

recall that the algorithm always increments exactly once in each iteration (unless it is already at the

highest level of detail). The incrementations chosen always select a replacement set that is covered

by � and not by the current state, except in classes � � � and � � � where this is not possible. In

these classes it increments once and then decrements until the total cost is less than or equal to the

rendering cost limit. The repeated decrementations must reach � � � , and then stop. The algorithm

then terminates, having selected and deselected the same impostor in the same iteration.

current no. of replacement set no. of replacement set new halt
class incr. selected decr. deselected class now?� � � 1 not covered by � 1 not covered by � � � � yes� � � 1 not covered by � � 1 not covered by � � � � yes� � � 1 covered by � 0 none � � � , � � � no� �� � 1 covered by � �

0 not covered by � � �� � , � � � , � � � no

Table 1: Actions of the incremental level of detail algorithm. Table showing
the actions of the incremental algorithm in any given iteration. Columns show the
current state class, the number of incrementations performed, whether or not the
replacement set selected is covered by � , the number of decrementations performed,
whether or not the replacement set(s) deselected are covered by � , the class of the
resulting state, and whether the algorithm terminates in this iteration.

In class � � � the incremention selects a replacement set covered by � . The state after incre-

mentation is either � � � or still � � � . Either way, the total cost of the state must be less than or

equal to the limit so no decrementation is performed. The resulting state is therefore either � � � or

still � � � .

In class � �� � the incremention also selects a replacement set covered by � . The state after

incrementation is either � � � or still � �� � . If � � � then the rendering cost is greater than the

limit and the algorithm must decrement until it is not. If � �� � then it may or may not be greater

than the limit, and so may or may not decrement. Any decrementations that are performed will

7.2. EQUIVALENCE OF THE INCREMENTAL AND NON-INCREMENTAL ALGORITHMS131

deselect replacement sets that are not covered by � . The decrementation halts when the total cost is

less than or equal to the limit. At this point the resultant state is either still � �� � , � � � , or � � � .

The state graph of the algorithm, when collapsed into state classes, is shown in Figure 44. The

algorithm moves from one state class to another, possibly sometimes staying in the same class from

one iteration to the next. However since the algorithm’s state always approaches � in every iteration,

it cannot stay in the same class indefinitely and must eventually move to class � � � and terminate.

Its final solution is therefore always � , the non-incremental algorithm’s solution.

s = g

s > g

s < g

s = g HALT

Figure 44: Summarized state diagram of the incremental algorithm. The four
state classes (represented by circles) correspond to the four possible relationships
that the algorithm’s current state (or level of detail) � can have to the solution state
of the non-incremental algorithm, � . In each iteration of the incremental algorithm
it changes its current state, either moving from one state class to another or staying
in the same class.

In this proof we have assumed that the incremental algorithm terminates by means of its normal

terminating case: that it selects (by incrementation) and deselects (by decrementation) the same

replacement set in a single iteration. This assumes that the exceptions in which the rendering cost

limit is either too low to select any representation or high enough to select the most expensive

representation have been eliminated by means of simple checks as described in Section 7.1.

We have also ignored the case in which the algorithms select the critical replacement set so-

lution: the lowest cost feasible solution containing the critical replacement set. In this case both

algorithms select it (assuming that the test of the critical replacement set solution is not skipped in

the incremental algorithm) and their solutions are the same. As we noted in Section 7.1, the critical

replacement set solution is unlikely to be useful in practice since the algorithm is intended for level

132 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

of detail optimization.

7.2.4 Proof for Funkhouser-Séquin Algorithm

Note that the proof of equivalence presented in Section 7.2 may be altered trivially to act as a

proof of equivalence of the incremental and non-incremental versions of Funkhouser and Séquin’s

algorithm (Sections 2.5.4 and 2.6.1). This follows from the fact that the relationship between our

incremental and non-incremental algorithms is essentially the same as the relationship between

theirs. The differences are that the Funkhouser-Séquin algorithm is non-hierarchical and deals with

value rather than relative value. The proof may therefore be adapted by replacing all references

to replacement sets with references to replacement items and all references to relative value with

references to value. In addition the concepts of descendant and ancestor replacement sets, as well

as the covering of replacement sets by levels of detail, must be used in their simpler non-hierarchical

form.

7.3 Advantages and Limitations

The complexity of the incremental algorithm is
��� � log ��� in the worst case. One possible imple-

mentation might make use of two lists of replacement sets, ordered by increasing and decreasing

relative value. One list contains candidates for selection during incrementation and the other can-

didates for deselection during decrementation. Then the tasks of finding the currently selected

impostor whose replacement set has greatest relative value and the currently completely selected

replacement set with lowest relative value are reduced in complexity to
��� � � . In exchange, the or-

dered lists must be updated after every incrementation and decrementation by means of the deletion

of the replaced impostors and the insertion, in order, of the newly selected replacement sets. This

can be performed optimally with a complexity of
���

log ��� . The number of decrementations per-

formed per iteration is
��� � � and the number of iterations in the worst case is

��� ��� . Therefore the

theoretical worst-case complexity of the algorithm is
��� � log ��� where � is the number of object

impostors.

We have found in practice that it may be difficult to find an implementation that allows the

theoretical complexity of
��� � log ��� . In particular, our experimental implementation presented

in Chapter 9 has a worst-case time complexity of
��� � � � . The stated

���
log ��� complexity of the

updates to the incrementation and decrementation lists depends on the lists being stored in some

optimal data structure such as a tree. If a tree is used however it will require constant rebalancing

7.3. ADVANTAGES AND LIMITATIONS 133

to prevent it degenerating into a list, since replacement sets are always removed from the front. In

our experimental implementation (described in Chapter 9) we made use of unsorted arrays rather

than more complex data structures, thereby incurring the cost of searching the arrays before every

incrementation and decrementation, but avoiding the costs of updating the lists afterwards (by in-

serting items in order). Moreover, this allows us to use arrays rather than lists, leading to increased

benefits due to caching. In this sense the complexity arguments are useful as guidelines only and

what matters in practice is the efficiency of the implementation.

In any case only a few iterations are generally performed for each frame, due to the typical

coherence between the approximate solutions of successive frames. Rather than beginning with the

lowest level of detail and repeatedly incrementing to reach the final solution as the non-incremental

algorithm of Chapter 6 does, this algorithm begins with the final solution from the previous frame

(which is typically similar to the final solution for this frame) and both increments and decrements

to reach the final solution. The actual number of incrementations and decrementations performed

varies depending on frame-to-frame coherence. In typical situations where frame-to-frame coher-

ence is high, the number of iterations (and therefore the practical complexity of the algorithm itself)

approaches
��� � � . Our experimental results in Chapter 9 suggest that its average complexity is close

to
��� ��� .

Situations where the complexity approaches
��� � log ��� or

��� � � � include the first frame, in

which the initial solution is simply an arbitrarily chosen level of detail (typically the lowest), and

those where the visual importance of many objects changes dramatically from one frame to the

next. In these cases the initial and final solutions may be quite dissimilar and a significant number

of incrementations and/or decrementations must be performed. In the worst case the efficiency of

the incremental algorithm approaches that of the non-incremental one. We report on an experimental

investigation of the algorithm’s efficiency in Chapter 9.

The incremental algorithm represents a hierarchical generalization of the optimization approach

of Funkhouser and Séquin (plus some adaptations to ensure half-optimality) at little or no expense

in terms of time complexity. The time complexities of the optimization algorithms of Funkhouser

and Séquin and Maciel and Shirley, by comparison, are
��� � log ��� and

��� ��� respectively
�

. The al-

gorithm of Maciel and Shirley however is not incremental and therefore requires a complete greedy

selection process starting from the lowest level of detail for every frame.

Our optimization algorithm has several important advantages over both the non-hierarchical

�

Maciel and Shirley claim in [47] that the complexity of their algorithm may be reduced to ��� log ��� , but we see no
way of doing this – see Chapter 2.

134 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

algorithm of Funkhouser and Séquin and the hierarchical algorithm of Maciel and Shirley. Firstly, it

is hierarchical and allows the use of hierarchical level of detail descriptions of arbitrary structure and

type with multiple shared representations for groups of objects. This enables the algorithm to save

additional rendering cost by selecting shared simple representations, or impostors, for groups of less

important objects and to guarantee a complete scene representation even when the complexity of

the visible scene is very high. This affords better renderings of more important objects and prevents

the appearance of “holes” as objects are omitted completely in order to limit rendering cost. In this

way the algorithm is an improvement over that of Funkhouser and Séquin [24] and is similar to that

of Maciel and Shirley [47].

Secondly, the algorithm provides a solution that is guaranteed to be at least half as good as the

optimal solution for a restricted subproblem of the hierarchical level of detail optimization problem

in which higher levels of detail are more expensive and provide diminishing returns. In this way it is

an improvement over the algorithms of both Funkhouser and Séquin and Maciel and Shirley, whose

algorithms provide no such guarantee (See Sections 2.6.1 and 4.3). Furthermore, as we showed

for our greedy algorithms for the MCKP in Section 3.7 and the Hierarchical MCKP in Section 6.5,

the algorithm’s solution is typically much better than half-optimal as long as the granularity of the

impostors is relatively small (that is, as long as there are no impostors whose individual benefits

contribute a significant proportion of the total benefit of the optimal solution).

The incremental hierarchical algorithm is predictive (See Section 2.2) in that it actively attempts

to regulate the rendering complexity of the scene representations selected in each frame. The pre-

dicted rendering time of its solution is always less than or equal to the available frame time. It, like

the algorithm of Funkhouser and Séquin, is therefore better able to guarantee interactivity in the

form of constant rendering times than are the non-predictive algorithms of for example Shade et al

[75] and Chamberlain et al [14].

The most significant limitation of the algorithm results from the assumption that the replacement

sets of impostors always have greater rendering cost and profit than those impostors and lower

relative value than the replacement sets (if any) containing those impostors on which the equivalence

to the non-incremental algorithm is based. If this requirement is not met then the incremental and

non-incremental algorithms are no longer equivalent and no guarantees can be placed on the quality

of the solution.

This diminishing returns assumption is identical to the hierarchical convexity assumption defin-

ing the subproblem of the Hierarchical MCKP for which the solution of the greedy algorithm of

Chapter 6 is at least half-optimal. In Section 6.5 we argued that this requirement was not excessively

7.4. SUMMARY 135

restrictive. Similar arguments apply here. The diminishing returns restriction agrees well with the

common conception of higher levels of detail as more expensive and less efficient representations

to be used only when they can be afforded. Moreover, we believe diminishing returns to be com-

monplace in rendering; gains in perceptual benefit due to more complex renderings seldom match

their accompanying increases in rendering cost. We expect, for example, that successive increases

in the polygon-count of an object model will tend to result in progressively smaller improvements

in the perception of the modeled object. For these reasons, we believe that the diminishing returns

requirement does not significantly impair the algorithm’s usefulness.

At any rate, the requirements are ultimately restrictions on the benefit and cost heuristics, rather

than on the actual perceptual benefit and rendering cost of object representations. For example,

fluctuations in the predicted perceptual benefit and rendering cost of impostors due to viewing ori-

entation must be carefully controlled. Impostors most likely to cause problems are those whose

perceptual benefit or rendering cost are strongly dependent on the angle from which they are viewed

– for example, single large textured polygons. In particular, problems are likely to arise in cases

where different impostors of the same object are affected differently by changes in viewing direc-

tion: in these cases the ordering of the impostors may change as viewing direction changes. In the

worst case, orientation dependent effects can simply be ignored by making benefit and cost heuris-

tics independent of viewing direction at the expense of some reduction in accuracy. Care must be

taken to ensure that the requirements are satisfied in all conceivable rendering situations.

Notably the algorithm of Funkhouser and Séquin (Chapter 2) also has a similar (but non-

hierarchical) limitation. Their incremental level of detail algorithm is only equivalent to their MCKP

greedy algorithm if higher levels of detail of objects always have higher profit and cost and lower

value. The manner in which their decreasing value assumption allows their incremental algorithm

to be equivalent to their non-incremental algorithm corresponds directly to the manner in which our

decreasing relative value assumption allows our incremental and non-incremental algorithms to be

equivalent.

7.4 Summary

In this chapter we have presented an incremental hierarchical level of detail optimization algorithm.

This algorithm is based on the equivalence of the hierarchical level of detail optimization problem

to a hierarchical version of the Multiple Choice Knapsack Problem, noted in Chapter 4, and is an

incremental version of the greedy algorithm for that Hierarchical MCKP presented in Chapter 6.

136 CHAPTER 7. HIERARCHICAL LEVEL OF DETAIL OPTIMIZATION ALGORITHM

The advantage of this algorithm over the simple greedy algorithm is that it accepts as input an initial

“best-guess” solution that is the approximate solution found for the previous frame and so is able to

exploit the typically large coherence between successive frames in level of detail optimization.

We have also shown that the incremental hierarchical algorithm is equivalent to the greedy

algorithm and provides an approximate solution that is guaranteed to be at least half-optimal for

a restricted subproblem of the hierarchical level of detail optimization problem. The assumption

defining the subproblem is that replacement sets of impostors should always have greater total profit

and cost than the impostors they replace, and lower relative value than the replacement sets (if any)

containing those impostors. The implications of this in terms of level of detail is that higher levels

of detail of objects must always provide diminishing returns.

We used level of detail graphs (introduced in Chapter 5) to prove the equivalence of the incre-

mental and non-incremental versions of the algorithm. Central to this proof is the realization that

level of detail optimization may be regarded as a search problem on a level of detail graph.

The next chapter presents the findings of an experiment designed to demonstrate the practical

usefulness of hierarchical level of detail optimization.

Chapter 8

Perceptual Experiment

This chapter describes a perceptual experiment that was conducted in order to compare the use of

hierarchical level of detail optimization to traditional non-hierarchical level of detail optimization.

In particular, we wish to determine the effects of the use of hierarchical level of detail descriptions

with shared representations for groups of objects that our hierarchical algorithm allows.

In order to compare the use of hierarchical level of detail descriptions to the use of non-

hierarchical ones, we needed a predictive non-hierarchical level of detail optimization algorithm.

We selected the incremental algorithm of Funkhouser and Séquin [24] (described in Chapter 2),

since it is the best predictive non-hierarchical algorithm that we are aware of, and because our

hierarchical algorithm is closely related to it. This experiment serves as a demonstration of the ef-

fectiveness of extending predictive level of detail optimization to make use of hierarchical level of

detail descriptions, and is therefore also in a sense an evaluation of the general approach used by

Maciel and Shirley [47].

For the purposes of this experiment we introduce the use of perceptual evaluation for the practi-

cal investigation of graphics algorithms. In keeping with the user-centric approach of level of detail,

perceptual evaluation involves the subjective controlled evaluation of rendered images by a group

of volunteer non-expert users. We derive much of our inspiration and methodology in this regard

from the more established practice of the perceptual evaluation of television pictures, as described

in [12].

We begin the chapter in Section 8.1 by discussing the experimental hypothesis that the experi-

ment is designed to test. In Section 8.2 we describe the experimental methodology used. In Section

8.3 we present and discuss the results of the experiment. We close the chapter in Section 8.4 with

some concluding remarks.

137

138 CHAPTER 8. PERCEPTUAL EXPERIMENT

8.1 Aims

As was discussed in Chapter 7, the principle advantage of the use of impostors for group objects is

that the level of detail optimization algorithm is able to select these group impostors in situations

where the rendering cost incurred by rendering even the cheapest representations of the individual

group components would be better invested in the improved rendering of other objects. Due to the

inherent complexity of multiple disjoint representations, it is generally possible to provide shared

representations that are simpler and therefore cheaper to render than even the simplest reasonable

representations of the individual objects. This allows the optimization algorithm to better cope with

arbitrary complexity of the visible scene by selecting, where appropriate, progressively less detailed

impostors for progressively larger groups of objects. In particular, it enables the algorithm to fulfill

the maximum rendering cost requirement in situations where the maximum permitted rendering

cost is lower than the nominal cost of the scene, without creating “holes” in the rendered images by

omitting scene objects entirely through the selection of null impostors (impostors with no drawable

representation).

We define the nominal cost of a scene in a particular situation to be the minimum cost of ren-

dering the scene in that situation without the use of null or group impostors. That is, the total cost

of the lowest non-null impostors of the visible leaf objects.

We hypothesize that the use of hierarchical level of detail descriptions with shared group object

representations is capable of improving the effectiveness of predictive level of detail optimization:

that the perceptual benefit of rendering may be improved for no increase in rendering cost. We claim

that the provision of shared group object representations and the ability to select them in level of

detail optimization allows the selection of a complete scene representation for every frame, avoiding

the appearance of holes. Furthermore we claim that hierarchical level of detail descriptions allow for

the saving of rendering cost that may be used to improve the rendering of more important objects.

8.2 Methodology

In this section we describe in detail the methodology employed in the evaluation. We discuss the

the evaluation scheme used, the content and selection of the image sequences used, the selection of

assessors, the experimental conditions, the evaluation scheme, the experiment procedure, and the

details of the optimization algorithms compared.

8.2. METHODOLOGY 139

8.2.1 Approach

The approach taken for the experimental evaluation was one of perceptual evaluation, which is more

commonly used in the evaluation of the perceptual image quality of television equipment [81] [31]

[66] [12]. The general approach of performing user studies has also been used recently by Smets

and Overbeeke [79], Watson et al [84] [85] and Reddy [63] [62].

Perceptual evaluation involves the subjective perceptual evaluation of a series of image se-

quences by a group of typical human assessors. We selected the stimulus comparison method [12],

in which image sequences produced using two competing methods are compared in pairs and an

index of the relationship between the two sequences of each pair is provided by each assessor. This

method gives rise to a distribution of voting indices across the grading scale used, for each assess-

ment pair. The average and standard deviation of each distribution is then taken as an indication of

the relationship between each pair of sequences, as perceived by a typical viewer.

The level of detail optimization algorithms used to produce the image sequences to be com-

pared were (an early version of) the incremental hierarchical level of detail optimization algorithm

of Chapter 7 (for hierarchical optimization) and the non-hierarchical level of detail optimization

algorithm of Funkhouser and Séquin (for non-hierarchical optimization). The behaviour of the hier-

archical and non-hierarchical algorithms becomes more as the rendering cost limit (the maximum

permitted rendering cost of each frame) increases. Conversely as the rendering cost limit decreases

the hierarchical algorithm is more likely to select simple shared representations for group objects

in order to satisfy it, so that the hierarchical and non-hierarchical results become less similar. We

therefore concentrated on very low rendering cost limits.

8.2.2 Image Content

Our test scene consists of a group of geodesic domes, where each dome is constructed from a set

of cylinders. Figure 45 shows two images of the scene. Cylinders were judged to be suitable leaf

objects due to the ease with which multiple impostor representations of them at varying levels of

detail can be created. Domes were selected as group objects due to the availability of suitable group

impostors in the form of low-resolution spheres.

The entire scene consists of 16 animated geodesic domes, arranged pseudo-randomly in the x

and y directions so as to partially fill the field of view. Their z (distance) coordinates are calculated

in each frame according to a sine-based function of the elapsed time (number of frames), so that

each dome moves periodically towards and away from the viewer. The phase of the function for each

140 CHAPTER 8. PERCEPTUAL EXPERIMENT

Figure 45: Scene used in the perceptual experiment. The scene consists of 16 geodesic dome
group objects, each constructed from 48 cylindrical parts. The domes are represented implicitly in
the image on the left by the explicit cylinder representations of their cylinder parts. In the image on
the right, they are represented explicitly by their associated spherical impostor representations.

dome is chosen pseudo-randomly, so that the domes are out of step. This allows a wide distribution

of distances from the viewer, while ensuring that each dome object is at times relatively close by

and at other times relatively far off. The level of detail algorithms are therefore forced to continually

and dynamically update the levels of detail of all objects.

Each geodesic dome used in the experiment consists of 48 cylinders. The use of impostors for

group objects in the hierarchical case is facilitated by this hierarchical structure of larger objects

composed of many smaller parts.

While this content does not represent worst case content for the effects under investigation, it

does serve to test the effects under circumstances when they are likely to be significant. The useful-

ness of impostors for general group objects can not be extrapolated entirely from this experiment,

since it will depend in general on the availability of group impostors with similar perceptions to that

of the implicit representations of those groups. We expect however that typical scenes will contain

many cases in which impostors for group objects may be employed as usefully as they are here.

8.2. METHODOLOGY 141

8.2.3 Stimuli

In this section we describe in detail the stimulus material selected for use in the experiment.

Rendering Cost Limits

Table 2 shows the range of rendering cost limits used in the experiment.

Rendering cost limit Description

1920 Half of the nominal cost
3840 Equal to the nominal cost
7680 Twice the nominal cost

15360 Equal to the sufficient cost

Table 2: Rendering cost limits. The range of rendering cost limits used in the
experiment.

The nominal cost (Section 8.1) of rendering all objects at their lowest non-null levels of detail

without the use of impostors for group objects is equal to the sum of the rendering costs of the

lowest detail non-null impostors of all the leaf objects. In this case, therefore, it is equal to the

number of domes (16) multiplied by the number of cylinder objects per dome (48), multiplied by

the Cost of the lowest detail non-null level of detail of each cylinder object. Since the rendering

cost of each object representation in this implementation is assumed to be view-independent, the

cost of the lowest detail cylinder impostor LoD � is always equal to 5. In addition, all objects are

always within the viewport and we make no attempt to take into account the effects on rendering

cost of occlusion of one object by another. Therefore, the nominal cost of the scene is always equal

to 3840.

One aim of the experiment is to compare the behaviour of the two algorithms under critical

conditions, where there is insufficient rendering time available to render all objects at their lowest

level of detail. That is, when the rendering cost limit is less than the nominal cost. In practice,

when either group or null impostors are available, the hierarchical and non-hierarchical algorithms

respectively will choose to select these impostors even for some situations where the rendering

cost limit is close to but greater than the nominal cost. This occurs because the use of null or

group impostors for less important objects represents a saving of rendering cost that may be better

utilized in the improved rendering of more important objects, as with any other low levels of detail.

By providing group or null impostors at all, we invite their selection even when not absolutely

142 CHAPTER 8. PERCEPTUAL EXPERIMENT

necessary.

For this reason, we selected a range of rendering cost limits encompassing a figure equal to

the nominal cost, one with a figure equal to half of the nominal cost, and one with a figure twice

that of the nominal cost. In addition, a single image sequence was created at a rendering cost limit

equal to the rendering cost of the highest detail representation of the scene, for use as a reference.

This full-detail sequence was rendered with the non-hierarchical algorithm, but could have been

rendered with either algorithm, since they behave identically when the rendering cost limit is equal

to the maximum rendering cost.

Image Sequences

Rendering cost limits were selected as described in Section 8.2.3. Table 3 shows the image se-

quences created, and the parameters of each.

Sequence Algorithm Rendering cost limit

1 hierarchical 7680
2 non-hierarchical 7680
3 hierarchical 3840
4 non-hierarchical 3840
5 hierarchical 1920
6 non-hierarchical 1920
7 non-hierarchical 15360

Table 3: Parameters. Parameters of the image sequences selected for the experi-
ment.

Figures 46, 48, 49 and 47 show the first frame from each of the seven image sequences listed

in Table 3. Notice the use of impostors for group objects in the image sequences rendered with the

hierarchical algorithm, and of null impostors in those rendered with the non-hierarchical algorithm.

Image Sequence Pairs

In the selection of image sequence pairs for comparison, we selected a subset of all possible pairs, in

accordance with our intention of comparing the perception of image sequences rendered with both

algorithms at the same rendering cost limit. A limited subset was chosen due to time constraints.

Table 4 shows the image sequence pairs created from the image sequences in Table 3.

8.2. METHODOLOGY 143

Figure 46: First frame of image sequence 7. The first frame of image sequence 7,
rendered with the non-hierarchical algorithm and with a rendering cost limit equal
to the sufficient cost of the scene, 15360. This represents the rendering of the entire
scene at maximum level of detail.

Figure 47: First frames of image sequences 1 and 2. The first frames of image sequences 1
(left) and 2 (right), rendered with the hierarchical and non-hierarchical optimization algorithms
respectively. The rendering cost limit is 7680, twice the nominal cost of the scene. Notice the use of
group and null impostors in the hierarchical and non-hierarchical cases respectively. Null impostors
are visible as missing objects.

144 CHAPTER 8. PERCEPTUAL EXPERIMENT

Figure 48: First frames of image sequences 3 and 4. The first frames of image sequences 3
(left) and 4 (right), rendered with the hierarchical and non-hierarchical optimization algorithms
respectively, and with a rendering cost limit of 3840. This represents the behaviour of the two
algorithms at a rendering cost limit equal to the nominal cost of the scene.

Figure 49: First frames of image sequences 5 and 6. The first frames of image sequences 5 (left)
and 6 (right), rendered with the hierarchical and non-hierarchical algorithms respectively, and with
a rendering cost limit of 1920, half the nominal cost. The extensive use of group and null impostors
in the hierarchical and non-hierarchical cases respectively is apparent.

8.2. METHODOLOGY 145

Sequence pair First sequence Second sequence

1 7 5
2 4 3
3 6 7
4 1 2

Table 4: Image sequence pairs. The pairs of image sequences used in the experi-
ment.

Sequence pair 2 compares the perceptions of image sequences 3 and 4, which were rendered

with different algorithms at a rendering cost limit of 3840. Sequence pair 4 compares the perceptions

of image sequences 1 and 2, which were rendered with different algorithms at a rendering cost

limit of 7680. Sequence pairs 1 and 3 compare the perceptions of image sequences 5 and 6 to

the perception of image sequence 7, respectively. Taken together, they compare the perceptions of

image sequences 5 and 6, which were rendered with different algorithms at a rendering cost limit of

1920. Recall that image sequence 7 was rendered at maximum level of detail for all objects, and is

used here as a reference sequence.

8.2.4 Subjects

Fifteen assessors participated in the experiment, none of whom were knowledgable in the field of

level of detail optimization, although some were knowledgable in computer graphics in general.

They were screened for normal corrected visual acuity, and the results indicated that all had ac-

ceptable visual acuity. Some had limited previous experience as assessors, as the experiment was

conducted in conjunction with that of another researcher, using an almost identical group of asses-

sors.

8.2.5 Experimental Conditions

The image sequences were recorded frame by frame onto Hi8 video tape and presented on a single

monitor in the form of a large television screen. The assessors were seated individually at a distance

six times the height of the screen. The background illumination in the viewing room was provided

by adjustable overhead lights, and was set to low.

146 CHAPTER 8. PERCEPTUAL EXPERIMENT

8.2.6 Evaluation

A categorical judgment grading scale was used. With this form of grading scale, assessors are asked

to assign the relation between each pair of stimuli to one of a set of semantically defined categories.

The categorical scale used was that recommended by the CCIR [12], shown in Table 5.

Index Description

-3 much worse
-2 worse
-1 slightly worse
0 the same

+1 slightly better
+2 better
+3 much better

Table 5: Categorical grading scale. The categorical grading scale used in the
experiment.

The semantic description of each category refers to the relationship of the second sequence to

the first. This grading scale yields a distribution of judgment indices across the scale categories for

each pair of image sequences.

8.2.7 Procedure

In this section we describe the experimental procedure employed in this experiment.

Presentations

The image sequences constituting the stimulus material were grouped into pairs as described in Sec-

tion 8.2.3. One session was held for each assessor, during which he or she viewed and voted twice

on each pair. Each session lasted between twenty and thirty minutes, including all introductions of

the assessors to the assessment method.

There were eight assessment trials per session, plus two test trials in which the assessors were

able to practice the assessment method. Each assessment trial constituted the comparison of two

image sequences. The structure of a trial is shown in Figure 50.

8.2. METHODOLOGY 147

10s 3s 10s 10s 10s 10s 10s3s

stimulus
A

stimulus
B

stimulus
A

stimulus
B

presentation N presentation N+1

Figure 50: Structure of an assessment trial. Each trial consisted of two pre-
sentations. During each presentation stimulus A was shown for 10 seconds, then
stimulus B, separated by a 3 second mid-grey adaption field and followed by a 10
second mid-grey post-adaption field.

Each trial consisted of two presentations. During each presentation stimulus fields A and B

were each shown for 10 seconds. A mid-grey adaption field was shown for 3 seconds between the

two stimulus fields and a mid-grey post-adaption field for 10 seconds afterwards. During the 10

second post-adaption field the number of the trial was superimposed in black. Voting on the trial

was only allowed during the final post-adaption field of the trial. Only one display monitor was

used.

The second four assessment trials were a repeat of the first four, showing the same image se-

quences again in the same order. However during these trials the assessors were allowed to view

each trial as many times as they felt necessary to arrive at a final judgment. Therefore during a

session an assessor provided two sets of indices of the same four assessment trials, with the first set

being forced judgments after only one viewing, and the second being considered judgments after

repeated viewing. The four unique assessment trials were ordered psuedo-randomly.

Introduction to Assessments

The assessors were introduced to the assessment methodology before the assessment trials of that

session began. These introductions were provided in written form for consistency, although verbal

questions were answered. Care was taken to avoid the introduction of bias.

In particular, the assessors were instructed as to the assessment procedure, the sequence and

timing of presentations, the allowed voting period, and the grading scale used. The type and range

of impairments likely to occur were described in the introduction and demonstrated by means of the

148 CHAPTER 8. PERCEPTUAL EXPERIMENT

test assessment trials.

The assessors were told that all of the image sequences represented the same scene consisting

of 16 objects, but drawn differently. They were explicitly asked to compare their perceptions of the

two image sequences in each presentation, and to express this relation to the best of their ability in

terms of the semantic grading categories provided.

8.2.8 Level of Detail Optimization Algorithms

Two level of detail optimization algorithms were compared: an early version of the incremental

hierarchical optimization algorithm described in Chapter 7 and the non-hierarchical algorithm of

Funkhouser and Séquin. The hierarchical algorithm is distinguished by its use of an hierarchical

scene description and its support for impostors, or shared drawable representations, for group ob-

jects. Here we describe in detail the characteristics of the actual algorithm implementations used in

the experiment.

Level of Detail Descriptions

Figure 51 shows conceptually the hierarchical level of detail description used in the case of the

hierarchical optimization algorithm. The scene (root) object is a group object consisting of the

group objects representing the domes, which in turn consist of the leaf objects representing the

cylinders. The leaf objects and the dome group objects have associated explicit impostor represen-

tations, whereas the scene group object does not.

The level of detail description used in the case of the non-hierarchical algorithm is shown in

Figure 52 and can best be thought of as a non-hierarchical collection of distinct and independent

objects, each with its own associated impostors. These objects correspond exactly to the objects at

the leaves of the hierarchy in the hierarchical description of the hierarchical optimization algorithm,

and represent the individual cylinders making up the geodesic domes. There is no concept of group

objects in the non-hierarchical algorithm, or of explicit shared levels of detail for them.

Levels of Detail

Six impostors were supplied for each leaf object in the hierarchical case and each object in the

non-hierarchical case. Since all of these objects are cylinders, their impostors were created easily

and naturally using the SoComplexity node provided by Inventor [52]. This node allows an Inventor

8.2. METHODOLOGY 149

(x16)

(x48) (x48)

. . .

.

Figure 51: Hierarchical level of detail description. The level of detail descrip-
tion used in the case of the hierarchical optimization algorithm. The description
consists of 768 objects representing cylinders, which are grouped into 16 groups of
48 cylinders each representing domes. The 16 dome group objects are then grouped
into a single scene object. Each cylinder object is provided with 6 impostors. In
addition the dome objects are each provided with a single impostor.

application to specify the geometric complexity, or subdivision level, of all Inventor primitives,

including the SoCylinder. Figure 53 shows the six cylinder impostors used.

The levels of detail of the cylinder objects consist of the six cylinder impostors in the hierarchical

case, and the six cylinder impostors plus a single null impostor in the non-hierarchical case. These

levels of detail are shown in Table 6 and Table 7.

Null impostors were supplied for the cylinder objects in the non-hierarchical case, since we

are interested in comparing the effects of the availability of impostors to the effects of not having

impostors, and these effects are different mainly when the available rendering time is insufficient

(x768). . .

Figure 52: Non-hierarchical level of detail description. The level of detail
description used in the case of the non-hierarchical optimization algorithm. The
description consists of 768 distinct objects representing the cylinders of which the
scene is composed. Each cylinder object is provided with 6 impostors plus a single
“null” impostor (shaded). No shared impostors are provided for groups of objects.

150 CHAPTER 8. PERCEPTUAL EXPERIMENT

Figure 53: Cylinder impostors. The six cylinder impostors in order of increasing
level of detail, corresponding to the Inventor SoComplexity values 0.00, 0.12, 0.20,
0.35, 0.53 and 0.61.

Level of detail Description Complexity value

LoD � lowest 0.00
LoD � . 0.12
LoD � . 0.20
LoD � . 0.35
LoD � . 0.53
LoD � highest 0.61

Table 6: Cylinder object levels of detail for the hierarchical case. Cylinder
object levels of detail used with the hierarchical optimization algorithm, consisting
of the six cylinder impostors. Note that the impostor corresponding to complex-
ity value 0.00 is still a renderable geometric object, albeit a very simple one (See
Figure 53).

to render all objects at even their lowest non-null levels of detail. In such situations, the non-

hierarchical algorithm is only able to meet the rendering cost limit by selecting null impostors for

some objects.

Recall from Section 8.1 that part of our hypothesis is that, because shared representations for

groups of objects may be simpler than even the simplest separate representations for those objects,

the use of shared representations allows the saving of additional rendering cost without resorting

to the use of null impostors. For this reason we chose, for our lowest detail non-null impostors,

representations that were about as simple as they could reasonably be made. As shown in Figure

53, the lowest detail impostors of the cylinder leaf objects consist of 3 sided prisms.

In the hierarchical case, a single impostor was provided for each group object corresponding to a

geodesic dome in the scene. These constituted the single explicit levels of detail of the dome objects.

The representation for the dome impostor was implemented as an SoSphere object in Inventor, with

8.2. METHODOLOGY 151

Level of detail Description Complexity value

LoD � null -
LoD � lowest 0.00
LoD � . 0.12
LoD � . 0.20
LoD � . 0.35
LoD � . 0.53
LoD � highest 0.61

Table 7: Cylinder object levels of detail for the non-hierarchical case. Cylinder
object levels of detail used with the non-hierarchical algorithm, consisting of the
six cylinder impostors and a single null impostor.

an SoComplexity value of 0.12. This representation was chosen because of the similarity of its

appearance to that of the dome objects when represented implicitly by the explicit representations

of their cylinder object children.

Heuristics

The benefit and cost heuristics provided for all objects were intentionally simplistic, and were in-

tended to function as suitable test cases rather than as accurate predictions of the true contribution

to scene perception and rendering cost of those objects.

The benefit heuristic, predicting the contribution to scene perception of a given object represen-

tation in both the hierarchical and non-hierarchical cases, was defined as follows:

Benefit
� � � � � � Accuracy

� � � � ��� ObjectSize
� � ��� ScreenSize

� � � (48)

where:

� Accuracy
� � � � � is defined as predicting the “rendering accuracy” of the level of detail

�
of

object
�

, and is given by:

Accuracy
� � � � � � � � � � �� � � � (49)

for a cylinder object at LoD � ,
� �� � .

This model of representation accuracy was proposed by Funkhouser and Séquin [24], and

provides increasing accuracy for more complex renderings, but to a diminishing extent.

152 CHAPTER 8. PERCEPTUAL EXPERIMENT

The coefficient of 1.2 was selected based on a best fit against empirical estimates of the per-

ceived accuracy of each representation. The constant 0.5 was chosen to satisfy the convexity

assumptions of the algorithms (of descending relative value and descending value respectively

— see Sections 2.6.1 and 7.3).

Accuracy
� � � � � � � � � � (50)

for a cylinder object at null level of detail LoD � .

The accuracy of the null cylinder representation was set to an arbitrary value of 0.01 which

is just high enough to ensure that the convexity assumption is satisfied even for null levels of

detail. In particular, we require that the value of any object at LoD � should be greater than

the value of that object at LoD � .

Accuracy
� � � � � � � � � � (51)

for a dome object at explicit LoD � , the dome impostor.

The accuracy of the non-leaf object impostor was similarly set to an arbitrary figure of 0.21,

which is just high enough to ensure that the convexity assumption holds for all descendant

objects that are represented by that impostor. In particular, we require that the value of a

non-leaf object at any of its explicit levels of detail should be higher than the value of any of

its descendant objects at their explicit levels of detail LoD � .

� ObjectSize
� � � predicts the average projected area of an object

�
in object space, and is

approximated by:

ObjectSize � length � diameter
� (52)

for a cylinder object at any level of detail, and

ObjectSize ��� � radius
�

(53)

for a dome object at explicit LoD � .

The size of an object, meaning the object space projected area of that object from the viewing

direction, was approximated by a simple viewing direction independent scheme. Since all

8.2. METHODOLOGY 153

leaf objects were cylinders, their average projected area in object space was approximated by

half of the product of their length and diameter. The size of group objects, whose impostors

were low-resolution spheres, was approximated by their cross-sectional area.

� ScreenSize
� � � is inversely proportional to the square of the euclidean distance of object

�
from the camera, and is given by:

ScreenSize � �
 distance
�

(54)

The ScreenSize of an object is an indication of the inverse of the degree to which apparent

object area is diminished by physical distance. It is therefore approximated by the inverse of

the square of the distance of the object from the camera. Euclidean distance was used for con-

venience of implementation in Inventor, although perpendicular distance from the viewplane

would be more accurate [10].

The cost heuristic, predicting the rendering cost of a given object representation in both the

hierarchical and non-hierarchical cases, was defined as follows:

Cost
� � � � � � Samples

� � � � � (55)

where:

� Samples(O,L) is defined as approximating the number of “samples” (polygons, in this case)

of the level of detail
�

of object
�

, and is given by:

Samples
� � � � � �

����
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�

�

� for
� � LoD �

�
for
� � LoD �

� � for
� � LoD �

� � for
� � LoD �

� � for
� � LoD �

� �
for
� � LoD �

(56)

for a cylinder object
�

at LoD � ,
���� � .

These values are approximations of the number of polygons used by Inventor for the corre-

sponding impostor representations.

154 CHAPTER 8. PERCEPTUAL EXPERIMENT

Samples
� � � � � � � � � � � � (57)

for a cylinder object
�

at null level of detail LoD � .

The figure 0.0001 was chosen to provide a negligible but non-zero cost for each null LoD, so

as to avoid undefined value calculations.

Samples
� � � � � � � �

(58)

for a dome object
�

at explicit level of detail LoD � , the dome impostor.

This figure represents the number of polygons in the dome impostor, namely the Inventor

SoSphere primitive at an SoComplexity value of 0.12.

This formulation of the cost heuristic is based loosely on that of Funkhouser and Séquin given

in [24]. A more complete implementation of their cost heuristic might have taken into account other

factors such as the dependency of the rendering cost of an object representation on the distance of

that object from the viewer.

8.3 Results and Discussion

Figure 8 shows the results of the initial choice voting over the four assessment trials, while Fig-

ure 9 shows the results of the considered choice voting. Recall from Section 8.2.2 that trial T1

compared the full detail sequence with the hierarchical low cost (1920) sequence, trial T2 com-

pared the non-hierarchical and hierarchical sequences for medium cost (3840), trial T3 compared

the non-hierarchical low cost (1920) sequence with the full detail sequence, and T4 compared the

hierarchical and non-hierarchical high cost (7680) sequences.

The results of the experiment appear to be significant. The 95% confidence intervals of all but

the last trial exclude zero and therefore indicate a significantly positive or negative average value,

in both the initial choice and considered choice sections.

The results in the initial choice and considered choice sections do not differ very significantly.

In particular, they do not change sign. This suggests that the initial choice votes are reliable as

indicators of the results of the experiment.

The second assessment trial compared the perceptions of the image sequences rendered with the

non-hierarchical and hierarchical algorithms for a rendering cost limit equal to the nominal cost of

8.3. RESULTS AND DISCUSSION 155

Trial � � � VAR[�] 95% interval
T1 -1.067 1.387 0.128 [-1.783, -0.351]
T2 0.867 1.356 0.123 [0.167, 1.567]
T3 1.800 1.656 0.183 [0.945, 2.655]
T4 0.067 1.385 0.128 [-0.622, 0.757]

Table 8: Voting indices for initial choice evaluation. Shown is the average
indicator value for each trial, as well as the standard deviation, variance and 95%
confidence interval of the average value.

Trial � � � VAR[�] 95% interval
T1 -1.133 1.642 0.180 [-1.988, -0.279]
T2 1.133 1.126 0.085 [0.552, 1.715]
T3 1.600 1.882 0.236 [0.628, 2.572]
T4 -0.067 1.438 0.138 [-0.809, 0.676]

Table 9: Voting indices for considered choice evaluation. Shown is the average
indicator value for each trial, as well as the standard deviation, variance and 95%
confidence interval of the average value.

the scene. The results of this trial suggest that, on average, the assessors considered the perception of

the image sequence rendered with the hierarchical algorithm to be slightly better than that rendered

with the non-hierarchical algorithm.

The fourth assessment trial compared the perceptions of the image sequences rendered with the

hierarchical and non-hierarchical algorithms for rendering cost limits equal to twice the nominal

cost of the scene. The results of this trial suggest that the assessors found no significant difference

between the two image sequences, on average.

The first and third assessment trials compare the perceptions of image sequences rendered with

the hierarchical and non-hierarchical algorithms respectively at a rendering cost limit equal to half

the nominal cost of the scene to the image sequence rendered at maximum detail. Taken together,

they compare image sequences 5 and 6. The results of these trials suggest that the assessors on

average considered the impairment of perception due to the hierarchical algorithm to be less than

that due to the non-hierarchical algorithm, at a rendering cost limit equal to half the nominal cost of

the scene.

Taking these results together, we deduce that the assessors on average rated the perception of

156 CHAPTER 8. PERCEPTUAL EXPERIMENT

the image sequences rendered with the hierarchical optimization algorithm to be better than that of

those rendered with the non-hierarchical algorithm, in the cases where the rendering cost limit was

equal to the nominal cost and half the nominal cost, but were unable on average to find a significant

difference in the case where the limit was equal to twice the nominal cost. This suggests that the use

of the hierarchical algorithm improves the perception of image sequences such as these when the

available rendering time is very low, but has little effect when it is not. This is as we would expect,

since the hierarchical algorithm differs in the use of group impostors instead of null impostors.

These are only used at low rendering cost limits or, equivalently, when the visible scene complexity

is high.

Furthermore, we can assume that no difference would be visible for higher rendering cost lim-

its, since the hierarchical and non-hierarchical algorithms behave more similarly, rather than less

similarly, for higher rendering cost limits (or equivalently, for lower visible scene complexity).

We speculate that the reason for the assessors’ preference of the image sequences rendered with

the hierarchical algorithm, for rendering cost limits less than and equal to the nominal cost, was the

impression of objects appearing and disappearing caused by the use of null impostors in the image

sequences rendered with the non-hierarchical algorithm. This creates the impression of flickering

“holes” in the scene representation. Although there is some visible degradation of the image se-

quences rendered with the hierarchical algorithm due to the switching between dome and cylinder

representations, this effect is, in our opinion, less disturbing than the complete disappearance of

those objects that occurs in the non-hierarchical case.

It is unclear to what extent the increase in detail levels in important objects afforded by the

selection of simple shared representations for unimportant group objects by the hierarchical algo-

rithm influenced the results. For one thing, the complete omission of object representations in the

non-hierarchical case affords even greater savings, at the expense of disturbing visual “hole” effects.

8.4 Conclusion

The experimental results show that the image sequences produced with the hierarchical predictive

level of detail optimization algorithm were preferred by typical assessors, on average, to those

rendered with the non-hierarchical algorithm, for rendering cost limits less than or equal to the

nominal cost of the scene.

We conclude that the appropriate use of impostors for group objects, as allowed by hierarchical

level of detail optimization, can lead to an improvement of the perception of image sequences over

8.4. CONCLUSION 157

those rendered with conventional Funkhouser and Séquin style non-hierarchical predictive level of

detail optimization. The advantages of the use of impostors for group objects became visibly appar-

ent to the assessors when the visible scene complexity was relatively high – at least high enough to

cause the omission of object representations by the non-hierarchical algorithm of Funkhouser and

Séquin. We believe this improvement in visual appearance is due to the reduction in the perception

of flickering “holes”, or of objects appearing and disappearing, caused by the use of null impostors

in the non-hierarchical case. The experiment was not conclusive regarding the advantages gained

by the application of saved rendering cost to improved renderings of more important objects.

More generally we conclude that perceptual evaluation, the subjective evaluation of image se-

quences by non-expert volunteer users, may be usefully employed to provide real-world data on the

effectiveness of graphics algorithms.

The next chapter, Chapter 9, describes a second experiment. Whereas this experiment was

designed to test the usefulness of hierarchical level of detail techniques in general, the next focuses

on our hierarchical algorithm in particular. Also, whereas this experiment used subjective perceptual

evaluation methods to test abstract effects such as user conviction, the next uses measurement and

analysis of performance information to test the efficiency of our algorithm and provide validation

of the theoretical time complexity analysis of Chapter 7.

Chapter 9

Radiosity Experiment

This chapter describes a very detailed second experiment which we proposed and supervised as a

4th year computer science honours project. The numerous measurements taken provide insight into

the practical application of our method to real world situations. The extensive programming and

testing as well as the recording of results and much of their analysis comprising the project was

conducted by Shaun Nirenstein and Simon Winberg, two honours students under our supervision

in the Department of Computer Science at the University of Cape Town. The test system made

use of and incorporated an earlier radiosity simulation system designed and implemented by Adrian

Secchia, an MSc student in the Department. Our role consisted of providing the underlying theory of

the algorithm design and the supervision of the project as well as constant involvement with regard

to issues arising in the implementation, optimization and evaluation of the system. The overall

analysis of the results is also our own.

Whereas the first experiment (described in Chapter 8) was aimed at demonstrating the general

usefulness of hierarchical level of detail optimization, this experiment is geared towards provid-

ing a convincing experimental demonstration of the applicability of the hierarchical level of detail

optimization algorithm described in Chapter 7 to a real-world visualization and rendering problem.

We begin in Section 9.1 by describing the aims of the experiment. In Section 9.2 we describe

the methodology employed, and in Section 9.3 we present and discuss the results. Finally we draw

some conclusions in Section 9.4.

158

9.1. AIMS 159

9.1 Aims

Our primary objective in this experiment is to test the hypothesis that the incremental hierarchical

level of detail optimization algorithm described in Chapter 7 may be used to perform hierarchical

level of detail optimization in realtime in a practical interactive visualization system. This hypothe-

sis requires that the algorithm is successful in limiting frame preparation times to ensure interactive

frame rates. Since the preparation of each frame involves both level of detail optimization and the

rendering of the selected scene representation, the hypothesis requires that both operations may be

performed in the available frame preparation time.

Funkhouser and Séquin [24] assume that rendering and level of detail optimization may be

performed in parallel, with the result that the full available frame preparation time is available for

both level of detail optimization and rendering. We expect that in practice this parallelization will

be partial at best due to dependencies and delays. As Funkhouser and

For example, rendering of the selected scene representation may only begin once the final solu-

tion to level of detail optimization for that frame is known, since the selected representation of any

object may in principle be incremented or decremented at any time during optimization. At best,

level of detail optimization for a frame may be performed in parallel with the rendering of the se-

lected representation for the previous frame. However if the interactivity of the system is measured

as the delay between a user action and the reflection of the resulting changes on the display then

from the point of view of this latency level of detail optimization and rendering must be assumed to

take place in series.

Frame preparation time is dependent on both the time taken for level of detail optimization

(which we call optimization time) and the time taken for the rendering of the scene representation

selected by the level of detail algorithm (rendering time). Showing that the frame time is acceptable

therefore implies showing not only that the rendering time is acceptable but also that the time taken

by the optimization algorithm itself is acceptable and leaves sufficient time for rendering. While

our theoretical analysis of the efficiency of our level of detail algorithm (Chapter 7) suggests that

its worst-case time complexity is
��� � log ��� , this alone says little about actual average and worst

case execution times of the algorithm. Furthermore since the algorithm is incremental and takes

advantage of frame-to-frame coherence it is important to investigate how its behaviour depends on

the amount of coherence between successive frames, which the complexity analysis fails to address.

Since the time complexity of the algorithm is not constant with respect to the size of its input it

makes no sense to speak of absolute execution times without making reference to workloads. We

160 CHAPTER 9. RADIOSITY EXPERIMENT

therefore aim to investigate how the optimization time as well as the rendering time depend in

general on the complexity of the scene being rendered.

9.2 Methodology

In this section we describe the methodology employed in the experiment.

9.2.1 Level of Detail for Hierarchical Radiosity

Hierarchical radiosity is a physically-based rendering technique in which equations modeling the

diffuse transfer of light between surfaces are solved numerically to produce shading intensity values

for each surface. As an approximation the scene is modeled by flat polygons, or patches, and in-

tensities are only calculated for the vertices of these patches. An initial scene description consisting

of a relatively small number of flat top-level polygons is adaptively subdivided (as shown in Figure

54) according to estimates of perceptual importance to produce a final collection of patches that

approximate the scene. The image quality of the resulting visualization therefore depends strongly

on the local level of refinement of the patch hierarchy.

Secchia [74], among others, has proposed a perceptually-based refinement heuristic that predicts

the visual importance of surfaces according to a simplistic model of human visual perception and

exploits the exaggerated importance of edges such as shadow boundaries to visual perception. The

illuminated patch hierarchies generated using this heuristic are characterized by higher levels of

refinement in areas that are, in some sense, perceptually more important. We use the radiosity

engine implemented by Secchia to generate input files for out system. Furthermore we make use

of the perceptual information inherent in the adaptively refined radiosity hierarchy to exploit visual

perception in the form of benefit heuristics that predict the visual importance of potential impostors,

taking into account the presence of perceptually important edges as detected by Secchia’s refinement

heuristic.

Since radiosity rendering is performed as a pre-process to rendering the level of detail-like adap-

tive subdivision of the top-level polygons is view-independent. The perceptual refinement heuristic

predicts the inherent perceptual importance of patches and can make no assumptions regarding the

position or orientation of the viewer. Therefore each part of the scene must be subdivided to the

maximum level of detail that might be required in any reasonable viewing situation. Our approach is

novel in that instead of simply rendering the entire patch hierarchy at the highest level of refinement

reached by the algorithm everywhere in the traditional fashion, we treat the patch hierarchy as a

9.2. METHODOLOGY 161

Figure 54: Adaptive patch subdivision in hierarchical radiosity. In hierarchical
radiosity methods the polygons defining the initial coarse scene representation are
recursively and adaptively subdivided into a patch hierarchy. Each patch is either
retained or subdivided into smaller patches, depending on the outcome of a simple
heuristic that predicts the complexity of the illumination function over that patch.
In our system patches are quadrilaterals and are always subdivided into four equal-
sized smaller quadrilaterals, if at all.

hierarchical level of detail description. The intermediate (non-leaf) patches that were generated and

subsequently subdivided serve as low detail impostors for the patches that arose from them. This al-

lows us to choose at render time the level of refinement appropriate for each part of the scene, taking

into account the characteristics of the current viewing situation and the rendering time available.

Our hierarchical level of detail description consists of a hierarchy of nested patch objects. Each

patch has a single polygon impostor, and its four children are the patches (if any) into which it was

refined. The root object corresponds to the entire scene and has no impostor. Its children are the

patches corresponding to the original top-level polygons. The level of detail optimization consists

of the selection, for each frame, of a single subtree of the hierarchy rooted at the scene object. The

polygon impostors at the leaves of the selected subtree comprise the selected scene representation.

By taking advantage of view-dependent information about the position and orientation of the viewer

162 CHAPTER 9. RADIOSITY EXPERIMENT

we are able to adaptively and dynamically favour increased patch resolution in areas that are per-

ceptually more important. In addition, due to the predictive nature of the optimization algorithm we

are able to place firm bounds on the predicted rendering cost of the selected scene representations.

The aim is to render, for each frame, the most perceptually effective scene representation that may

be rendered in the available rendering time. Note that the reduction of rendering complexity in

unimportant areas allows us to render more important areas in increased detail. Figure 55 shows

example output demonstrating the use of hierarchical level of detail optimization.

Figure 55: Sample output of the experimental system. The top three images
show the same view of the same scene, with rendering cost limits equal to 500,
1000 and 1500 respectively. At bottom are wireframe renderings of the same views.
Note the adaptive subdivision of polygons.

Note that the use of the non-leaf patches as polygon impostors without actively subdividing

some neighbouring patches into triangles to resolve unshared vertices results in T-vertex artifacts

(see Figure 56), visible as shading discontinuities. We chose for simplicity to ignore the T-vertex

problem, with the result that some visual artifacts were introduced (see Figure 57). These could be

avoided by triangular subdivision of offending patches if improved visual quality was desired.

9.2. METHODOLOGY 163

a b c

Figure 56: The T-vertex problem. The T-vertex problem arises when one of a pair
of adjacent patches is subdivided for rendering and the other is not, as shown in
(a). The most obvious solution, shown in (b), is to subdivide the adjacent patch
as well. However this is impractical as it quickly propagates throughout the entire
hierarchy, constraining the possible selections to those in which the entire hierarchy
is subdivided to the same level. Instead it is possible to subdivide each adjacent
patch into three triangular patches as shown in (c), which avoids the creation of
new unshared vertices.

9.2.2 Scope

The size of the radiosity-generated scene descriptions used in the experiment is quite large: consist-

ing of up to approximately 50000 polygons. The scenes represented are standard radiosity scenes

often found in the literature (in particular, the office and dining room scenes [74]). The

office and dining room scenes consist of around 200 and 400 top-level polygons respec-

tively.

The choice of radiosity patches as objects in the hierarchical level of detail description, resulting

in single-polygon impostors, represents a worst case for the level of detail algorithm since every

single polygon must be individually considered for rendering by level of detail optimization. In

the majority of visualization systems the objects in the hierarchy would be of a larger granularity

and their impostors would typically consist of tens or hundreds of polygons, resulting in lower

optimization overhead per polygon. By using the output of a hierarchical radiosity simulation on

a polygon-per-impostor basis we essentially test the level of detail optimization algorithm in the

extreme case in which every single scene primitive must be individually considered for rendering.

164 CHAPTER 9. RADIOSITY EXPERIMENT

a b

Figure 57: An example of the T-vertex problem. Images (a) and (b) show wire-
frame and shaded renderings of the same scene view. Note the occurance of T-
vertex problems, identifiable in (a) as vertices that are incident to only 3 polygons
and in (b) as shading discontinuities.

9.2.3 Experimental System

Nirenstein and Winberg [51] implemented an instrumented testbed system that allows the recording

and playback of real and simulated user interaction during the realtime rendering of an optimized

scene representation, as well as the measurement and recording of timing information. A screenshot

of the system is shown in Figure 58.

In accordance with our aim of testing the time performance of our algorithm, the system allows

the automatic recording of the optimization time, rendering time and total frame preparation time

of each frame during a walkthrough of the scene using either an interactive or pre-recorded viewer

path. It also allows the rendering of arbitrary scenes whose level of detail descriptions are generated

using the hierarchical radiosity system of Secchia, adapted to also output the solution values of

non-leaf patches.

The system is instrumented and allows the user to change the parameters of the optimization

algorithm interactively, such as the rendering cost limit (the maximum permitted total cost of the

selected representation for each frame) and the weightings of the components of the benefit and

cost heuristics. It displays, in addition to the optimized scene representation rendered in OpenGL,

an OpenGL wireframe rendering of the optimized representation and a graphical tree view of the

hierarchical scene description showing which polygons were selected. The wireframe and hierarchy

9.2. METHODOLOGY 165

Figure 58: Screenshot of the experimental system. Screen shot of the test system
displaying a radiosity scene. The top left window contains user interface controls
and performance graphs. The top right window shows the rendered scene. The
bottom window shows a wireframe view and the radiosity hierarchy.

views as well as the regular updating of the graphs and readings on the user-interface may be turned

off to avoid compromising the accuracy of timing measurements.

All tests were performed on the same Silicon Graphics O2 workstation running the IRIX oper-

ating system. The workstation specifications are shown in Table 10.

Cost and benefit heuristics were provided that predict the rendering cost and perceptual benefit

of object impostors. These heuristics were designed to be as simple as possible while still providing

acceptable results. The rendering cost of our single 4 sided polygon impostors is measured as a

constant 1.2 arbitrary units irrespective of viewing distance and size. We assume that since our

polygons are typically relatively small their rasterization cost is relatively small and the rendering

cost is therefore dependent mostly on their setup cost. Our results suggest that this is a sufficiently

accurate approximation.

The benefit heuristic was formulated as:

benefit
� �� � depthConstant � depth

�
log
�
sizeConstant �

area
distance

� � �
where area is the area in object space of the polygon comprising the impostor, distance is the

distance of the center of the polygon from the viewer, and depth is the maximum depth of the full-

detail hierarchical level of detail description at and below the node to which the impostor belongs.

The area and distance measures provide an estimate of the projected size of the polygon on the

166 CHAPTER 9. RADIOSITY EXPERIMENT

Component Specification

System SGI O2, IP32
Operating System IRIX 6.3
Video subsystem MVP version 1.4
Clock speed 175 MHz
FPU MIPS R10010 Rev: 0.0
CPU MIPS R10010 Rev: 2.5
Data cache 32 Kbytes
Instruction cache 32 Kbytes
Secondary cache 1 Mbyte on processor
Main memory 64 Mbytes

Table 10: Test workstation specifications. All tests were performed on a standard
SGI O2 entry level workstation.

viewport (not taking into account changes in apparent size due to viewing direction, which were

ignored). The effect of this is that patches close to the viewer are favoured over those that were

further away. The constants determine the relative influence of the terms and can be interactively

adjusted in our system. In addition we reduce the benefit of a polygon to zero if it is backfacing

or if it is behind the viewer, in order to take advantage of the rendering cost saved by clipping and

culling.

By biasing the benefit heuristic to predict greater perceptual benefit for polygons that were more

densely refined in the maximum resolution scene description, we effectively encourage the selection

of higher levels of detail in those areas. Since the patch hierarchy scene description was adaptively

subdivided according to the perceptually-based refinement heuristic of Secchia [74] the maximum

depth of the hierarchy at any point provides a convenient approximate measure of the perceptual

importance (in terms of intensity gradients) of the detail at that point. The effects of the benefit

heuristic are illustrated in Figure 59. Our simple viewplane-clipping approximation does not detect

invisible detail which is in front of the viewer but outside the viewport, accounting for the fact that

the amount of detail visible in Figure 59 (a) and (b) is greater than that in Figure 59 (c) and (d).

The fact that some areas of the scene are inherently more important than others (due, in this

case, to the shading information they contain) became apparent after our first test runs with a simpler

benefit heuristic based purely on distance. If important details such as shadow boundaries are treated

the same as less important areas such as walls then the result is that the important details are rendered

9.2. METHODOLOGY 167

a b

c d

Figure 59: Variation of local detail with viewing distance. Images (a) and
(b) show shaded and wireframe renderings of a scene view. Images (c) and (d)
show shaded and wireframe renderings of the same view, zoomed such that the
viewer is closer to the far wall. Note that the refinement of the polygons around
the shadow boundary has increased as a result of the distance component of the
benefit heuristic. Note also that the shadow boundary itself is well-refined in the
far view. This is due to the complexity component of the heuristic, which favours
higher detail in areas where the maximum detail is higher, ensuring that important
areas such as shadow boundaries are given precedence over unimportant areas that
are relatively uniform.

168 CHAPTER 9. RADIOSITY EXPERIMENT

in poor detail in favour of better renderings of uninteresting expanses of wall. Some objects are

inherently more interesting and require more detail to represent them adequately.

9.3 Results and Discussion

In this section we present the results of the experiment, together with discussion of their signifi-

cance. We assume some familiarity with the workings of the hierarchical level of detail optimization

algorithm, which was described in Chapter 7.

9.3.1 Dependence of Optimization Times on Changes in Viewing Angle

We began by investigating the consistency of the execution times of the optimization algorithm it-

self. Recall that the optimization algorithm is incremental and exploits frame-to-frame coherence

by basing its initial solution on the solution found for the previous frame (Section 2). The success

of this approach depends on the degree of coherence between the optimal solutions of consecutive

frames. We therefore measured the change in viewing angle from one frame to the next (for sim-

plicity, without regard to changes in viewing position) along each of several paths through the scene

and noted the corresponding optimization times for each frame. Measurements were taken for four

different rendering cost limits. The rendering cost limit dictates how much total detail the algorithm

is allowed to select, and is measured in arbitrary cost units. Figure 60 shows the resulting graphs.

From Figure 60 it seems that the algorithm execution time is roughly proportional to the an-

gular change in viewing direction between successive frames. This is to be expected as greater

changes in viewing angle result in more objects becoming visible that were previously not visi-

ble and vice versa. As objects become newly invisible their allocated rendering cost must be re-

allocated amongst other objects (some of them newly visible) by means of repeated level of detail

incrementations and decrementations.

Also evident is that the algorithm execution time is roughly proportional to the rendering cost

limit. While the aim of the algorithm is to ensure constant rendering times irrespective of visible

scene complexity, the optimization time (the execution time of the algorithm itself) increases as the

amount of detail selected increases. Higher cost limits imply that more selected impostors must be

considered for incrementation and decrementation in each iteration of the algorithm. This result is

in contrast to the algorithm of Funkhouser and Séquin, whose execution time is independent of the

rendering cost limit. Since our optimization algorithm is hierarchical it is able to save optimization

9.3. RESULTS AND DISCUSSION 169

0

100

200

300

400

500

600

700

800

0 50 100 150 200

Change in Viewing Angle (in degrees)

A
lg

o
ri

th
m

 T
im

e
(i

n
 m

s)

Cost = 3000

Cost = 2500

Cost = 2000

Cost = 1500

Figure 60: Dependence of optimization times on turn magnitude. Optimization
algorithm execution times for various changes in viewing angle from one frame to
the next along a typical path and for various rendering cost limits. The cost of a
single impostor is 1.2 units. The “cost” referred to in the diagram is the rendering
cost limit. See the text for an explanation of the high frequency variations that are
evident.

time by making use of shared impostor representations that are more efficient to consider than a non-

hierarchical collection of impostors providing the same number of levels of detail for each scene

object. This saving increases as the rendering cost limit decreases, since lower detail impostors are

shared to a greater extent than higher detail ones. The complexity of our algorithm approaches that

of the Funkhouser-Séquin algorithm as the rendering cost limit tends to the cost of the full detail

representation.

The high frequency irregularities of the graphs in Figure 60 can be explained by noting that the

visibility of objects changes due to backface culling and clipping. Sometimes a small change in

position or orientation will cause a top-level polygon refined into perhaps hundreds of patches to

suddenly become visible where previously it was not. In these instances the allocation of rendering

cost must be updated by means of repeated incrementations and decrementations. This destabilizing

effect on optimization times is exaggerated in this particular case due to the fine granularity of the

single-polygon impostors. In our scene the top-level polygons are generally each refined to hundreds

or thousands of patches, so that large groups of impostors exhibit high visibility coherence.

The linear dependence of optimization time on change in viewing angle implies that the algo-

rithm execution times are lower in cases with greater frame-to-frame coherence, as expected.

170 CHAPTER 9. RADIOSITY EXPERIMENT

9.3.2 Frequency of Turn Magnitudes

Most of the turn magnitudes shown in Figure 60 represent pathological “non-incremental” cases in

which the change in viewing angle is great and there is little coherence from one frame to the next.

We therefore measured the relative frequency of turn magnitudes for a typical walkthrough in our

system.

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

Turn Magnitude (in degrees)

F
re

q
u

en
cy

 o
f

T
u

rn
 M

ag
n

it
u

d
e

Figure 61: Frequency of turn magnitudes. The relative frequency of various
changes in viewing angle between consecutive frames.

Figure 61 shows the resulting graph. It is clear that small changes in viewing angle greatly

outnumber large ones, with changes above 30 degrees being extremely rare. We expect this to be

the case in any useful interactive visualization system, as very large turn magnitudes are generally

distracting to the user and in fact unlikely to occur at all at high frame rates. This argument suggests

an important insight into the use of incremental techniques that exploit frame-to-frame coherence,

namely that they may amplify any drops in frame rates that occur. This implies that it is more

imperative than ever to ensure that reasonable frame rates are maintained. The greater the frame rate

that is consistently maintained, the greater the interframe coherence and the better the performance

of incremental rendering algorithms that depend upon it.

9.3.3 Algorithm Execution Times

The high degree of dependence of the algorithm execution time on frame-to-frame coherence and

the relative infrequency of large turn magnitudes (and associated poor frame-to-frame coherence)

9.3. RESULTS AND DISCUSSION 171

imply that the average execution time of the algorithm may be somewhat different to the worst

case time. Indeed, this is the raison d’être of the incremental algorithm: to exploit frame-to-frame

coherence and so ensure that average execution times are far better than worst case execution times,

at the expense of the efficiency of the worst case. To test this we measured minimum, average and

maximum optimization times for a typical path for a range of rendering cost limits.

Figure 62 shows the results. The average optimization time is closer to the minimum time

than the maximum, and its behaviour is close to linear. We surmise that this is due to the relative

infrequency of large turn magnitudes: typically there is significant coherence between successive

frames. The minimum algorithm execution time (corresponding to the limit case in which consec-

utive frames are identical) is essentially constant with respect to the rendering cost limit, but the

maximum (approaching the opposite limit in which consecutive frames are completely different)

appears to be greater than
��� ��� .

0

200

400

600

800

1000

1200

1400

1600

1800

1500 2500 3500 4500 5500 6500 7500 8500 9500

Cost (Proportional to number of polygons)

A
lg

or
ith

 T
im

e
(in

 m
s)

Max

Average

Min

Figure 62: Optimization algorithm execution times. Plot showing how the maxi-
mum, minimum and average optimization algorithm execution times (over a typical
walkthrough) vary with increasing rendering cost limit. The cost of a single poly-
gon impostor is 1.2 units.

While our theoretical analysis (Section 7.3) predicts a theoretical worst case time complexity of��� � log ��� , it is unclear whether an
��� � log ��� implementation is useful in practice. The theoret-

ical
��� � log ��� complexity assumes the use of ordered priority queues (as Funkhouser and Séquin

[24] refer to them) of impostors available for incrementation and decrementation, reducing the com-

plexity of the selection operations to
��� � � at the expense of update operations of

���
log ��� . In the

172 CHAPTER 9. RADIOSITY EXPERIMENT

implementation of our experimental system we found that the advantages of using advanced data

structures with lower theoretical complexity (such as sorted trees rather than unordered lists) were

questionable in this case due to the costs involved in maintaining them. Sorted trees for example

would quickly become unbalanced and degenerate into lists if not actively rebalanced, since dele-

tions always occur at the front. Instead we made use of unordered lists stored as static arrays, with a

resulting algorithm complexity of
��� � � � . Static arrays provide an advantage that complex dynamic

data structures cannot: they exploit cache coherence by ensuring that consecutively accessed data

elements are always stored in consecutive areas of memory. The disadvantage of static arrays is that

maintaining them in sorted order is expensive due to the constant need for shifting of elements to

create space. For this reason we stored our lists as unsorted arrays. We found that the improvement

of cache hit rate resulting from the use of arrays far outweighed the disadvantages of having to

explicitly search the array for every selection.

The usefulness of the incremental algorithm hinges on the fact that consecutive frames gener-

ally exhibit a high degree of inter-frame coherence, as suggested by the relatively high frequency

of small turn magnitudes shown in Figure 61. There are nonetheless cases in which coherence is

limited and optimization times are significantly high. If left unchecked these may lead to excessive

inter-frame delays due to the cost of the algorithm itself rather than the actual rendering. Consider-

ing Figure 62 again we see that for a maximum cost of 5500 (corresponding to approximately 4500

selected impostors, or optimization of more than 4500 scene objects for every frame) the maximum

optimization time may be as high as 400 ms in pathological cases where inter-frame coherence is

lacking.

9.3.4 Constancy of Frame Preparation Times

To test the constancy of frame preparation rates, we measured instantaneous frame rates (defined as

the inverse of frame preparation time) for each frame of a typical walkthrough, with a rendering cost

limit corresponding to 2500 selected impostors (or 2500 rendered polygons). In order to deduce

the cause of any irregularities we found, we also measured the frame rendering times (excluding

optimization times) and the optimization algorithm execution times for the same walkthrough.

Figure 63 shows the results. It is clear that frame preparation times vary dramatically from one

frame to the next. We note however that the time taken to render the selected scene representation

is relatively constant over all 160 frames, varying between approximately 50 and 80ms. This shows

that the algorithm is successful in maintaining relatively constant rendering times. Furthermore, we

note that optimization algorithm execution times vary dramatically from one frame to the next, and

9.3. RESULTS AND DISCUSSION 173

that there is a marked correlation between the troughs in the graph of frame preparation times and

the peaks in the graph of optimization times. This suggests that the variation in frame preparation

time is dependent mainly on variations of the execution time of the optimization algorithm; the

algorithm is successful in regulating frame rendering times, but is not guaranteed to take a limited

or constant amount of time to do so. The objective thus becomes to place limits on the execution

time of the optimization algorithm itself.

9.3.5 Truncation of Algorithm Execution

The inconsistency of frame optimization times, if left unchecked, might undermine the ability of the

algorithm to regulate frame preparation times. We therefore implemented a simple cut-off scheme

in which the algorithm’s execution is simply halted if its execution time is found to have exceeded

some predetermined limit. In the event of the algorithm being halted the solution reached so far

is used as the final solution. Due to the iterative refinement strategy employed by the algorithm,

its selected solution after any iteration always represents a feasible and complete (although not

necessarily half-optimal) solution to the hierarchical level of detail optimization problem.

We measured the instantaneous frame rates achieved for a walkthrough with this technique.

Figure 64 shows the results. It is clear that time-truncation of the optimization algorithm succeeds

in ensuring a relatively constant frame rate, irrespective of visible scene complexity.

The disadvantage of truncating the algorithm execution time is that in the frames where the

execution is truncated the algorithm produces a potentially less than half-optimal solution. This in

theory results in occasional drops in visual quality. The amount of error introduced by truncation is

approximately proportional to the amount of time truncated.

Since there is significant coherence not only between successive optimal detail levels but also

between the changes in successive optimal detail levels over a series of frames, optimization time

skipped on one frame is typically borrowed and will in the worst case need to be “repaid” in the

form of additional computation in the following frames. The error introduced by truncation will

always be corrected swiftly as long as excessive execution times are rare. In a typical system the

image quality would worsen immediately after a sudden excessive motion by the viewer and then

progressively improve (over at most a few frames) during periods of relatively little motion.

As we noted with regard to Figures 60 and 62, optimization time is dependent on the rendering

cost limit and the degree of coherence between successive frames. Because the average optimization

time is closer to the minimum optimization time than the maximum, we can expect the frequency

of truncations to be relatively low.

174 CHAPTER 9. RADIOSITY EXPERIMENT

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

Frame

F
ra

m
es

 p
er

 s
ec

o
n

d

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Frame

T
im

e
(i

n
 m

s)

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Frame

T
im

e
(i

n
 m

s)

Figure 63: Constancy of frame preparation times. Plots showing (from top to
bottom) instantaneous frame rates, frame rendering times (excluding optimization
time) and optimization times (excluding rendering time) for each frame over the
course of a typical walkthrough. The rendering cost limit is 3000, equating to 2500
single-polygon impostors.

9.3. RESULTS AND DISCUSSION 175

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000
Frame

F
ra

m
es

 p
er

 s
ec

o
n

d

Figure 64: Frame rates after truncation of optimization times. Frame rates of
a typical walkthrough (calculated as the inverse of individual frame preparation
times), with optimization times truncated at 50ms. The cost limit is 1500, corre-
sponding to 1250 single-polygon impostors. The full detail scene representation
contains 36879 polygons.

9.3.6 Hierarchy Simplification

Recall from Figure 62 that the average optimization time was less than 100 ms for rendering cost

limits lower than approximately 2500, corresponding to the selection of more than 2000 individual

impostors. Because of the nature of our impostors, this corresponds to only around 2000 polygons.

This fine granularity of one graphics primitive per impostor represents a worst case for our algo-

rithm, since every single polygon in the scene must be individually considered for selection. In fact,

due to the speed of the graphics hardware, the consideration of an impostor is more expensive than

its rendering.

To improve this situation we implemented a hierarchy simplification strategy in the form of

a transformation that reduces the hierarchy by collapsing multiple impostors into single shared

representations. After application of this transform, the impostor of each object is the union of

the impostors that previously belonged to its children. The leaves of the hierarchy are removed,

as their impostors are now replaced by those of their parents. This transform is well suited to

regular hierarchical descriptions such as this radiosity problem in which all the impostors are of

the same type. In the instance of our hierarchy a single application of the transform results in

each object (or patch) having a single impostor consisting of four polygons. A second application

176 CHAPTER 9. RADIOSITY EXPERIMENT

results in impostors of sixteen polygons, and so forth. The general effect of the transform is to

exponentially increase the granularity of the impostors so that more scene geometry is represented

by each impostor. The cost and benefit heuristics must of course be adjusted accordingly.

To test the success of this approach we measured optimization times for a walkthrough of a scene

after zero, one and two applications of the hierarchy simplification transform. The results are shown

in Figure 65. The rendering cost limit in each case corresponds to a maximum selection of 1666

polygons. The result of applying the simplification transform is to greatly reduce the optimization

time required to select the same amount of scene detail. After only one application of the transform

the optimization times in Figure 65 are reduced to well below 25 ms for inter-frame turn magnitudes

less than 50 degrees and for a selected scene representation consisting of around 416 impostors.

0

50

100

150

200

250

0 50 100 150 200

Change in Angle

A
lg

o
ri

th
m

 T
im

e

1 Quad

4 Quads

16 Quads

Figure 65: Optimization times after hierarchy simplification. A plot showing
optimization algorithm execution times (averaged over four different walkthroughs
of the same scene) for various changes in viewing angle after application of the
hierarchy simplification transform zero, one and two times. The rendering cost
limit in each case corresponds to 1666 selected polygons.

It is important to note that after the application of the transform (and adjustment of the cost

heuristic to reflect the fact that impostors are now more expensive to render) the amount of detail

that may be rendered within the available time does not change. Instead we have traded flexibility

of detail selection for speed of optimization, by decreasing the number of possible combinations of

impostors from which the algorithm may choose (see Figure 66). We have found in practice that

a single application of the transform in our case results in an almost imperceptible loss of quality,

9.3. RESULTS AND DISCUSSION 177

a b

c d

Figure 66: Loss of flexibility due to hierarchy simplification. Due to the aggrega-
tion of groups of impostors into combined, more complex impostors, the flexibility
to select combinations of polygons for rendering is reduced. After one application
of the simplification transform, all impostors contain four polygons. The single
four-polygon impostor shown in (a) must be replaced by the four-polygon impos-
tors of its four children as shown in (b). After that, any of those impostors may be
replaced in turn by the impostors of its children, as shown in (c). However it is not
possible to replace only part of the original four-polygon impostor, as shown in (d).

whereas two or more applications tend to result in visible degradation. Figure 67 compares the

visible effects of zero, one and two applications of the transform.

9.3.7 Dependence of Frame Preparation Times on Scene Complexity

In order to test the dependence of frame preparation times (and therefore frame rates) on the com-

plexity of the full detail scene, we measured non-optimized (full detail) rendering times, optimized

rendering times, optimization times and optimized frame preparation times for identical walk-

throughs of increasingly complex versions of the same scene, with the rendering cost limit held

constant throughout.

Figure 68 shows the results. The unoptimized rendering renders the impostors at the leaves

of the hierarchical scene description and the unoptimized rendering time increases linearly with

the complexity of the scene description, as we would expect (since the number of leaf nodes in

a regular hierarchy increases linearly with the total number of nodes). The rendering time of the

optimized scene is constant irrespective of full detail complexity, as we would also expect since the

complexity of the selected scene representation is dependent only on the constant rendering cost

limit. The optimization algorithm execution times are constant except for low scene complexities

178 CHAPTER 9. RADIOSITY EXPERIMENT

Figure 67: Visual effects of the hierarchy simplification transform. The same
view of the same scene after zero, one and two applications of the hierarchy sim-
plification transform.

where it increases with increasing scene complexity, probably due to more successful caching of

smaller scene descriptions. The frame preparation time, being roughly the sum of the optimization

time and the rendering time, behaves similarly to the optimization time and becomes constant for

increasingly complex scene descriptions.

9.4 Conclusion

We presented the results of an experimental application of our predictive hierarchical level of detail

optimization algorithm to the interactive rendering of hierarchical radiosity scenes. This work rep-

resents both an evaluation of the feasibility and effectiveness of the optimization algorithm and a

demonstration of the applicability of hierarchical level of detail optimization to hierarchical radios-

ity.

The results attest to the predictive nature of the algorithm, showing that it may successfully

be used to ensure bounded rendering times, to within the accuracy of the cost heuristic used. The

algorithm selects a scene representation for every frame that may be rendered in the available time,

regardless of the complexity of the full detail scene representation and the complexity of the visible

portion of the scene.

We note that since the algorithm successfully regulates frame rendering times the variation in

frame preparation times becomes dependent chiefly on the variable execution times of the algorithm

itself. Moreover because the algorithm is incremental and successfully exploits frame-to-frame

coherence its execution times are strongly dependent on the amount of coherence inherent in the

9.4. CONCLUSION 179

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Max. Cost

T
im

e
(i

n
 m

s)

A

B

C

D

Figure 68: Dependence of frame preparation times on scene complexity. Graphs
showing the effects of increasing full detail scene complexity (max cost) on (A)
optimized rendering times, (B) unoptimized (full detail) rendering times, (C) op-
timization times and (D) optimized frame preparation times. The rendering cost
limit is held constant throughout.

image sequence and are not guaranteed to be constant. In particular the frame-to-frame coherence on

which the algorithm depends is strongly influenced by the effects of the angular change in viewing

angle from one frame to the next on clipping and culling. The execution times of the optimization

algorithm are far lower in the more common coherent cases than in the relatively rare cases in which

coherence is lacking. In the worst case the complexity of the algorithm approaches
��� � log ��� or��� � � � , depending on the implementation chosen, with respect to the number of scene impostors. In

the best case it is
��� � � . The average case is much closer to the best case than the worst and seems

to be close to
��� ��� .

The application of the algorithm to the rendering of radiosity scenes holds promise. The most

significant obstacles to the algorithm appear to be the fine granularity (in this case) of the level of

detail description and the destabilizing effects of visibility culling on frame-to-frame coherence.

The strong dependence on frame-to-frame coherence exhibited by the algorithm suggests a use-

ful lesson regarding the use of incremental algorithms in interactive systems: the use of algorithms

that depend on frame-to-frame coherence for their efficiency serves to reinforce the need for consis-

tent and reasonable frame rates. Any drops in frame rates that occur tend to cause the animation and

user’s input to be sampled at a lower rate, leading to a reduction in frame-to-frame coherence that

180 CHAPTER 9. RADIOSITY EXPERIMENT

results in further performance degradation. The use of incremental algorithms such as ours makes

it all the more important to ensure that reasonable frame rates are maintained.

Nirenstein and Winberg have demonstrated that a simple cut-off scheme may be used to prevent

the algorithm execution times from exceeding an acceptable limit, while still providing a feasible

and complete (though possibly occasionally non-half-optimal) solution for every frame. This en-

sures nearly constant frame rates and, as long as the cases in which the optimization time exceeds the

limit are relatively rare, does not result in serious or cumulative degradation of the image sequence.

We note that the execution time of the algorithm is directly dependent on the number of im-

postors constituting its solution. This, in combination with the hierarchical nature of the algo-

rithm, makes the optimization time dependent on the rendering cost limit, in contrast to the non-

hierarchical algorithm of Funkhouser and Séquin which fails to make use of the increased efficiency

of optimization resulting from shared impostors and so always performs the same amount of work

for each incrementation and decrementation. In the case of this experiment the optimization time is

linear with respect to the rendering cost limit, due to the identical cost of all object impostors.

The excessive optimization times recorded for the scene with single-polygon impostors suggest

that, for the optimization algorithm to be useful in practice, the granularity of the impostors should

not be too fine. A useful guideline is that the cost of considering an impostor for rendering should be

significantly lower than the cost of simply rendering it without optimization. Nirenstein and Win-

berg have demonstrated the use of a hierarchy simplification transform that automatically increases

the granularity of the impostors and so dramatically reduces the optimization effort required to op-

timize a given scene. After one application of this transform the algorithm was found to perform

efficiently and with acceptable visual results.

Our experience suggests that rendering artifacts in important features such as edges and shadow

boundaries are easily noticed and detract from user conviction even at relatively large distances.

This suggests that some objects (or parts of objects) are inherently more important to perception,

and disagrees with the popular assumption, implicit in static level of detail control based on distance,

that all objects can be treated equally and that the perception of artifacts is predicted well by distance

or screen-space size alone. It may often be worthwhile taking the inherent perceptual importance of

objects into account in level of detail optimization.

The final result of our implementation was a working system in which the optimization al-

gorithm was used to successfully regulate frame rates while providing acceptable levels of visual

quality.

Chapter 10

Conclusion

In this thesis we have investigated the implications of hierarchical scene descriptions for predictive

level of detail optimization. Our primary motivation is the development of improved predictive

hierarchical level of detail optimization techniques that eliminate lag by actively regulating frame

rendering times while optimizing the visual quality of the resulting frames. Our aims were to an-

alyze the predictive hierarchical level of detail optimization problem formally, to develop tools for

this formal analysis, and to derive and test improved predictive hierarchical level of detail optimiza-

tion techniques.

We presented a new classification of existing level of detail optimization strategies, showing that

the acceptance of predictive level of detail optimization has been surprisingly slow and that the ap-

plication of predictive approaches to hierarchical scene descriptions has been all but nonexistent. In

the light of this result, our aim is to investigating the reasons for this disparity and hence to address

it. We reviewed previously demonstrated results showing that level of detail optimization is equiv-

alent to a well-known constrained optimization problem, the Multiple Choice Knapsack Problem

(MCKP). However we have shown that the equivalence is not as complete as was suggested, and

in particular that it is compromised by the use of hierarchical scene descriptions with shared object

representations. Furthermore we have drawn attention to errors in a previously proposed algorithm

based on this approach that invalidate claims that it provides solutions with guaranteed perceptual

quality levels and cast doubts on the solution quality of another algorithm based on it.

By basing our research on a more solid mathematical foundation and developing formal defini-

tions of our ideas, we derived new algorithms and techniques that allowed us to correct the failings

of previous approaches and overcome the difficulties posed by shared object representations. In

181

182 CHAPTER 10. CONCLUSION

Chapter 4 we presented the first formal definition of a hierarchical level of detail description: a hier-

archical scene description in which multiple shared representations may be provided for groups of

objects. Using this formal definition as a basis we showed that the sharing of object representations

that characterizes hierarchical descriptions effectively places implicit constraints on their selection.

By making these constraints explicit we clearly identified the hierarchical level of detail optimiza-

tion problem, and demonstrated its equivalence to a new hierarchical generalization of the MCKP,

which we call the Hierarchical MCKP (Section 4.2). In the process we provided the first clear

and formal distinction between the hierarchical and non-hierarchical level of detail optimization

problems.

We developed a useful tool for the formal investigation of the hierarchical level of detail opti-

mization problem. These level of detail graphs, described in Chapter 5, serve as visual and semantic

representations of the state spaces generated by hierarchical level of detail descriptions. They are

therefore useful in the analysis and investigation of the hierarchical level of detail optimization prob-

lem and associated optimization algorithms. In Section 7.2 we used them to prove the equivalence

of the incremental and non-incremental versions of our predictive hierarchical level of detail opti-

mization algorithm. In Section 7.2.4 we showed how this proof may be easily extended to serve as

a proof of the equivalence of other previously presented algorithms whose equivalence was stated

without proof.

Our main focus was the development of an improved predictive hierarchical level of detail op-

timization algorithm. This algorithm, presented in Chapter 7, is an extension and correction of pre-

vious approaches (namely those of Funkhouser and Séquin and Maciel and Shirley) that combines

predictive level of detail optimization and the use of hierarchical scene descriptions, and therefore

provides the benefits of both. It is predictive and so guarantees consistent and reasonable frame

rendering times, making a significant contribution to the elimination of lag. It is hierarchical and

so may take full advantage of the use of hierarchical scene descriptions with shared representations

for groups of objects. It is incremental and exploits frame-to-frame coherence by basing its initial

solution on the solution found for the previous frame. Our incremental algorithm is an extension of

a new greedy approximation algorithm for the Hierarchical MCKP, which we presented in Chapter

6. We proved the correctness of the Hierarchical MCKP greedy algorithm, showing that its solution

is always at least half-optimal for instances of a useful and well-defined subproblem of the Hier-

archical MCKP. The level of detail optimization algorithm therefore provides guaranteed levels of

predicted perceptual quality. In the process of developing the Hierarchical MCKP algorithm we

presented and proved two new greedy algorithms for the conventional MCKP, whose correctness

183

we proved formally using mathematical techniques. One of these is a simplified version of the other

that we proved is half-optimal under a simplifying assumption.

We presented the results of experiments testing the usefulness of hierarchical level of detail

optimization in general and the effectiveness and efficiency of the hierarchical level of detail opti-

mization algorithm in particular. Our first experiment, described in Chapter 8, introduced the use of

perceptual evaluation, the subjective evaluation of image sequences by non-specialist users, for the

evaluation of computer graphics algorithms. The second experiment, described in Chapter 9, con-

sisted of the implementation of our hierarchical level of detail algorithm in a practical interactive

visualization system and demonstrated its use in the realtime optimization of thousands of scene

objects. One important contribution of this experiment was the first application of hierarchical level

of detail optimization to the dynamic view-dependent adaptive simplification of radiosity-generated

scene descriptions at render-time. The experiment demonstrated the effectiveness of the predictive

hierarchical approach and the feasibility of our algorithm.

In this thesis we have presented an effective approximation algorithm for the predictive hierarch-

ical level of detail optimization problem. Therefore an effective and feasible algorithm exists for

the automatic selection of hierarchically defined detail levels with the aim of optimizing predicted

visual quality while limiting predicted rendering cost. Our algorithm depends on the provision of

reasonably accurate benefit and cost heuristics that predict the perceptual benefit and rendering cost

of object representations. This effectively shifts the unsolved portion of the broader level of detail

problem to the creation of accurate and efficient prediction heuristics. Since the algorithm success-

fully limits predicted rendering cost and provides guaranteed levels of predicted visual quality, the

problem is to accurately predict the perceptual benefit and rendering cost of arbitrary object repre-

sentations. Experience suggests that simple ad hoc heuristics tend to produce reasonable results.

However this is still an open problem with much scope for further improvement.

Bibliography

[1] D. G. Aliaga. Visualization of complex models using dynamic texture-based simplification.

In IEEE Visualization ’96, pages 101–106. IEEE, October/November 1996.

[2] D. G. Aliaga and A. A. Lastra. Architectural walkthroughs using portal textures. In IEEE

Visualization ’97, pages 355–362. IEEE, October 1997.

[3] D. G. Aliaga and A. A. Lastra. Smooth transitions in texture-based simplification. Computer

and Graphics, Elsevier Science, 22(1):71–81, 1998.

[4] J. Amanatides. Realism in computer graphics: a survey. IEEE Computer Graphics and Appli-

cations, 7(1):44–56, 1987.

[5] R. D. Armstrong, D. S. Kung, P. Sinha, and A. A. Zoltners. A computational study of a

multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software, 9:184–

198, 1983.

[6] M. Beigbeder and G. Jahami. Managing levels of detail with textured polygons. In Com-

pugraphics ’91, First International Conference on Computational Graphics and Visualization

Techniques, volume I, pages 479–489, 1991.

[7] S. Belblidia and J.-C. Paul. Generating various levels of detail of architectural objects for

image-quality and frame-rate control rendering. Computer Graphics International, 1996.

[8] S. Belblidia, J.-P. Perrin, and J.-C. Paul. Multi-resolution rendering of architectural models.

In International Conference on Computer-Aided Architectural Design Features, 1995.

[9] E. H. Blake. A metric for computing adaptive detail in animated scenes using object-oriented

programming. In Computer Graphics Forum (Eurographics), 1987.

184

BIBLIOGRAPHY 185

[10] E. H. Blake. Complexity in Natural Scenes: A Viewer Centered Metric for Computing Adaptive

Detail. PhD thesis, Queen Mary College, London University, 1989.

[11] D. A. Carlson and J. K. Hodgins. Simulation levels of detail for real-time animation. In

W. Davis, M. Mantei, and V. Klassen, editors, Graphics Interface, pages 1–8, May 1997.

[12] The Centre for Communication Interface Research, Department of Electrical Engineering, The

University of Edinburgh. Recommendation 500-4: Method for the Subjective Assessment of

the Quality of Television Pictures, 1990.

[13] A. Certain, J. Popović, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive mul-

tiresolution surface viewing. In Computer Graphics Proceedings, Annual Conference Series,

pages 91–98. ACM SIGGRAPH, 1996.

[14] B. L. Chamberlain, T. DeRose, D. Lischinski, D. Salesin, and J. Snyder. Fast rendering of

complex environments using a spatial hierarchy. In Graphics Interface ’96, 1996.

[15] A. K. Chandra, D. S. Hirschberg, and C. K. Wong. Approximate algorithms for some gener-

alized knapsack problems. Theoretical Computer Science, 3:293–304, 1976.

[16] J. Clark. Hierarchical geometric models for visible surface algorithms. Communications of

the ACM, 19(10):547–554, 1976.

[17] L. DeFloriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy. A visibility-based model for

terrain features. In Proceedings of International Symposium on Spatial Data Handling, July

1986.

[18] K. Dudzinski and S. Walukiewicz. A fast algorithm for the linear multiple-choice knapsack

problem. Operations Research Letters, 3(4):205–209, October 1984.

[19] C. Erikson and D. Manocha. Simplification culling of static and dynamic scene graphs. Tech-

nical Report TR98-009, Department of Computer Science, University of North Carolina at

Chapel Hill, 1998.

[20] J. S. Falby, M. J. Zyda, D. R. Pratt, and R. L. Mackey. NPSNET: Hierarchical data structures

for real-time three-dimensional visual simulation. Computers and Graphics, 17(1):65–69,

1993.

186 BIBLIOGRAPHY

[21] M. L. Fisher. Worst-case analysis of heuristic algorithms. Management Science, 26(1):1–17,

January 1980.

[22] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and

Practice, 2nd ed. Addison-Wesley, Reading MA, 1990.

[23] H. Fuchs, D. P. Greenberg, and A. van Dam. Picture this: The changing world of graphics. In

Defining a Decade: Proceedings of CSTB’s 10th Anniversary Symposium. National Academy

Press, 1996.

[24] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for interactive frame rates

during visualization of complex virtual environments. In Computer Graphics Proceedings

Annual Conference Series, volume 27, pages 247–254. ACM SIGGRAPH, August 1993.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, 1979.

[26] G. Gens and E. Levner. An approximate binary search algorithm for the multiple-choice

knapsack problem. Information Processing Letters, 67(5):261–265, 1998.

[27] A. S. Glassner. Adaptive precision in texture mapping. In Computer Graphics, volume 20,

pages 297–306. ACM SIGGRAPH, 1986.

[28] E. B. Goldstein. Sensation and Perception. Brooks/Cole Publishing Company, 5 edition,

August 1998. ISBN 0534346804.

[29] R. Gossweiler. A system for application-independent time-critical rendering.

http://www.cs.virginia.edu/ rg3h/sigChiPaper.html.

[30] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In Computer Graphics,

volume 27, pages 231–238. ACM SIGGRAPH, 1993.

[31] R. Hamberg and H. de Ridder. Continuous assessment of perceptual image quality. Journal

of the Optical Society of America, 12(12):2573–2577, December 1995.

[32] P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications,

6(11):56–67, 1986.

[33] P. S. Heckbert. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, Univer-

sity of California, Berkeley, 1991.

BIBLIOGRAPHY 187

[34] P. S. Heckbert and M. Garland. Multiresolution modeling for fast rendering. In Proceedings

of Graphics Interface ’94, pages 43–50, 1994.

[35] H. Hoppe. Progressive meshes. In Computer Graphics Proceedings of SIGGRAPH ’96, vol-

ume 30, pages 99–108. ACM SIGGRAPH, 1996.

[36] H. Hoppe. View-dependent refinement of progressive meshes. In Computer Graphics Pro-

ceedings, Annual Conference Series, pages 189–198. ACM SIGGRAPH, 1997.

[37] E. Horvitz and J. Lengyel. Perception, attention, and resources: A decision-theoretic approach

to graphics rendering. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial

Intelligence, August 1997.

[38] P. M. Hubbard. Collision detection for interactive graphics applications. IEEE Transactions

on Visualization and Computer Graphics, 1(3):218–230, September 1995.

[39] T. Ibaraki, T. Hasegawa, K. Teranaka, and J. Iwase. The multiple-choice knapsack problem.

Journal of the Operations Research Society of Japan, 21(1), March 1978. 59–95.

[40] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset

problems. J. Assoc. Comput. Mach., 22:463–468, 1975.

[41] C. Jackins and S. L. Tanimoto. Oct-trees and their use in representing three-dimensional

objects. Computer Graphics and Image Processing, 14(3):249–270, 1980.

[42] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Opera-

tions Research, 4(4):339–356, November 1979.

[43] P. Lindstrom, D. Koller, L. F. Hodges, W. Ribarsky, N. Faust, and G. Turner. Level-of-detail

management for real-time rendering of phototextured terrain. Technical Report GIT-GVU-95-

06, College of Computing, Georgia Institute of Technology, 801 Atlanta Drive, NW, 1993.

[44] P. Lindstrom, D. Koller, L. F. Hodges, W. Ribarsky, N. Faust, and G. Turner. Real-time,

continuous level of detail rendering of height fields. In Computer Graphics Proceedings,

Annual Conference Series, pages 109–118. ACM SIGGRAPH, 1996.

[45] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environ-

ments. Technical Report TR98-029, Department of Computer Science, University of North

Carolina at Chapel Hill, August 1998.

188 BIBLIOGRAPHY

[46] P. W. C. Maciel. Interactive rendering of complex 3D models in pipelined graphics architec-

tures. Technical report, Department of Computer Science, Indiana University, Bloomington,

1994.

[47] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using textured clusters.

In 1995 Symposium on Interactive 3D Graphics, pages 95–102, April 1995.

[48] D. Marshall, D. S. Fussell, and I. A.T. Campbell. Multiresolution rendering of complex botan-

ical scenes. In Graphics Interface ’97, pages 97–104, May 1997.

[49] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations.

John Wiley and Sons Ltd., 1990.

[50] D. Meagher. Octree: A new technique for the representation, manipulation and display of

arbitrary 3D objects by computer. Technical Report IPL-TR-80-111, Rensselaer Poltechnic

Institute, 1980.

[51] S. Nirenstein and S. Winberg. Hierarchical level of detail optimisation algorithm evaluation.

Technical Report CS98-15-00, Department of Computer Science, University of Cape Town,

1998.

[52] Open Inventor Architecture Group. Open Inventor C++ Reference Manual. Addison-Wesley

Publishing Company, 1994.

[53] J. Pajon, Y. Collenot, X. Lhomme, N. Tsingos, F. Sillion, P. Guilleteau, P. Vuyslteker, G. Gril-

lon, and D. David. Building and exploiting levels of detail: An overview and some VRML

experiments. In VRML ’95 First Annual Symposium on the Virtual Reality Modelling Lan-

guage, pages 117–122, 1995.

[54] E. Puppo and R. Scopigno. Simplification, LOD and multiresolution: Principles and applica-

tions. Eurographics ’97 Tutorial T4, Budapest, Hungary, September 1997.

[55] M. M. Rafferty, D. G. Aliaga, V. Popescu, and A. A. Lastra. Images for accelerating architec-

tural walkthroughs. IEEE Computer Graphics and Applications, November/December 1998.

[56] R. L. Read, D. S. Fussel, and A. Silberschatz. System-wide multiresolution. Technical Report

TR-93-04, Department of Computer Science, University of Texas at Austin, Austin, Texas

78712-1188, February 1993.

BIBLIOGRAPHY 189

[57] M. Reddy. Reducing lags in virtual reality systems using motion-sensitive level of detail. In

Proceedings of the 2nd UK VR-SIG conference, 1994.

[58] M. Reddy. Musings on volumetric level of detail for virtual environments. Virtual Reality:

Research, Development and Application, 1(1):49–56, 1995.

[59] M. Reddy. A perceptual framework for optimising visual detail in virtual environments. In

Proceedings of the FIVE’95 Conference, QMW, University of London, 18-19 December, 1995.

[60] M. Reddy. A survey of level of detail support in current virtual reality solutions. Virtual

Reality: Research, Development and Application, 1(2):85–88, 1995.

[61] M. Reddy. A measure for perceived detail in computer-generated images. Technical report,

Department of Computer Science, University of Edinburgh, 1996.

[62] M. Reddy. The development and evaluation of a model of visual acuity for computer generated

imagery. Technical Report ECS-CSG-30-97, Department of Computer Science, University of

Edinburgh, 1997.

[63] M. Reddy. The effects of low frame rate on a measure for user performance in virtual environ-

ments. Technical report, Department of Computer Science, University of Edinburgh, 1997.

[64] W. T. Reeves. Physically based modeling vs. faking it. Communications of the ACM,

31(2):116–117, 1988.

[65] J. Rohlf and J. Helman. Iris performer: A high performance multiprocessing toolkit for real-

time 3D graphics. In Computer Graphics Proceedings, Annual Conference Series, volume 28,

pages 381–394. ACM SIGGRAPH, July 1994.

[66] J. A. J. Roufs and H. Bouma. Towards linking perception research and image quality. In

Proceedings of the SID, volume 21, pages 247–270, 1980.

[67] S. M. Rubin. The representation and display of scenes with a wide range of detail. Computer

Graphics and Image Processing, 19:291–298, 1982.

[68] S. M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of complex

scenes. In Computer Graphics, volume 14, pages 110–116. ACM SIGGRAPH, 1980.

[69] S. Sahni. Approximate algorithms for the 0-1 knapsack problem. Journal of ACM, 22:115–

124, 1975.

190 BIBLIOGRAPHY

[70] G. Schaufler. Exploiting frame to frame coherence in a virtual reality system. In VRAIS ’96,

pages 95–102, Santa Clara, California, April 1996.

[71] G. Schaufler. Image-based object representation by layered impostors. In Symposium on

Virtual Reality Software and Technology ’98, pages 99–104, November 1998.

[72] G. Schaufler, T. Mazuryk, and D. Schmalstieg. High fidelity for immersive displays. Technical

Report TR-186-2-96-02, Institute for Computer Graphics, Technical University of Vienna,

1996.

[73] G. Schaufler and W. Sturzlinger. A three dimensional image cache for virtual reality. In

Computer Graphics Forum, volume 15, pages 227–236. EUROGRAPHICS, August 1996.

[74] A. Secchia. Perceptual refinement for hierarchical radiosity. Master’s thesis, Department of

Computer Science, University of Cape Town, April 1998.

[75] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hierarchical image caching

for accelerated walkthroughs of complex environments. In SIGGRAPH’96, Computer Graph-

ics Proceedings, Annual Conference Series, pages 75–82. ACM SIGGRAPH, August 1996.

[76] Silicon Graphics, Inc. IRIS Performer Programmers Guide (Document Number 007-1680-

030), 1995.

[77] Silicon Graphics, Inc. OpenGL optimizer. White paper, 1997.

[78] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulation for real-time visu-

alization of urban scenery. In D. Fellner and L. Szirmay-Kalos, editors, Computer Graphics

Forum, proceedings of Eurographics ’97, volume 16, pages 207–218. Eurographics, Blackwell

Publishers, 1997.

[79] G. J. F. Smets and K. J. Overbeeke. Trade-off between resolution and interactivity in spatial

task performance. IEEE Computer Graphics and Applications, pages 46–51, September 1995.

[80] S. J. Teller and C. H. Sequin. Visibility preprocessing for interactive walkthroughs. In Com-

puter Graphics, volume 25, pages 61–69. ACM SIGGRAPH, July 1991.

[81] K. Teunissen and H. D. M. Westerink. A multidimensional evaluation of the perceptual quality

of television sets. SMPTE Journal, pages 31–38, January 1996.

BIBLIOGRAPHY 191

[82] J. Torborg and J. T. Kajiya. Talisman: Commodity realtime 3D graphics for the PC. In

Computer Graphics, volume 30. ACM SIGGRAPH, 1996.

[83] The VRML Consortium Incorporated. VRML97, International Standard ISO/IEC 14772-

1:1997, 1997.

[84] B. Watson, N. Walker, and L. F. Hodges. A user study evaluating level of detail degradation in

the periphery of head-mounted displays. Technical Report 95-31, Graphics, Visualization and

Usability Center, Georgia Institute of Technology, 1995.

[85] B. Watson, N. Walker, L. F. Hodges, and A. Worden. Effectiveness of peripheral level of

detail degradation when used with head mounted displays. Technical Report 96-04, Graphics,

Visualization and Usability Center, Georgia Institute of Technology, 1996.

[86] C. Wiley, I. A.T. Campbell, S. Szygenda, D. Fussell, and F. Hudson. Multiresolution BSP trees

applied to terrain, transparency, and general objects. In Graphics Interface ’97, pages 88–96,

May 1997.

[87] M. Wloka. Incorporating update rates into today’s graphics systems. Technical Report CS-

93-56, Department of Computer Science, Brown University, Providence, RI, USA, December

1993.

[88] H. Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary Models. PhD

thesis, Department of Computer Science, UNC-Chapel Hill, July 1998.

[89] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff. Visibility culling using hierarchical oc-

clusion maps. In SIGGRAPH ’97, volume 31, 1997.

