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Abstract

We present a new hierarchical level of detail optimizatitgodathm that is predictive and so
may be used for active frame rate control. We base our approa®arlier work demonstrating
the equivalence of level of detail optimization to the Mpilé Choice Knapsack Problem (MCKP).
We show that this equivalence is broken for hierarchicatllev detail scene descriptions in which
shared representations may be provided for groups of ahjecd that the level of detail opti-
mization problem for such descriptions is equivalent to megalization of the MCKP which we
call the Hierarchical MCKP. We present a greedy approxiomagilgorithm for this Hierarchical
MCKP whose solution we prove is guaranteed to be at leasoipilinal for a useful subproblem
in which more expensive selections provide diminishingmas. Furthermore we show that the
typical behaviour of the algorithm is much better than legifimal and that the instances in which
itis not are relatively rare. The level of detail optimizatialgorithm we present is an incremental
version of this greedy algorithm designed to exploit fralmdrame coherence by basing its ini-
tial solution on the solution found for the previous framee Yfove the equivalence of the two
algorithms by considering their state spaces and showatgibth reach the same solution state.



1 Introduction

In order to guarantee consistent frame rates during inigeagisualization, the dependency of the
rendering complexity on the complexity of the visible scemest be eliminated. While advanced
occlusion culling techniques and static level of detagkstbn methods based on perceptual impor-
tance serve to reduce the rendering complexity of typieahis, they tend to make the complexity
of rendering dependent on the variable complexity of théblesscene rather than on the constant
complexity of the entire model, thereby tending actuallynireasethe variability of frame rates.
Predictivelevel of detail techniques promise a solution to this probl&hey regulate frame rates
by basing level of detail selection on estimates of avalabhdering resources, as well as on
perceptual issues. Their aim is to select, for each franees#t of detail levels that will provide
the best overall perceptual benefit while limiting theiralaiendering cost to the available frame
rendering time.

We propose a predictive hierarchical level of detail opgation algorithm that is a hybrid ex-
tension of those of Funkhouser and Séquin and Maciel arteghand corrects problems noted
with those algorithms. We develop a transformation fromeadnichical level of detail description
to a non-hierarchical one that allows us to apply the comstthoptimization approach of Funk-
houser and Séquin to a hierarchical description. The @dgaris that shared representations may
be provided for groups of objects. This preserves the nbhiegarchical description of scenes
and saves additional rendering costs to allow better rémglef more important objects.

A contribution of this paper is to show that the hierarchlegél of detail optimization problem
is equivalent to dierarchical generalizatioof the Multiple Choice Knapsack Problem (MCKP).
Our algorithm is essentially a greedy approximation alidponi for this problem, and is a hierarch-
ical extension of a greedy algorithm for the MCKP that we prgsn [7]. Our algorithm corrects
a problem with the algorithm of Funkhouser and Séquin anllemaise of a new metricela-
tive value that measures the desirability of potential selectiof fesult is that our algorithm’s
solution is always at least half as good as the optimal swiufior a useful subproblem of the
Hierarchical MCKP. We show that its solution is typically afiubetter.

The remainder of the paper is organized as follows. In Se@iwve review related work. In
Section 3 we present a formal definition of a generalizedanidrical level of detail description.
In Section 4 we introduce the Hierarchical MCKP. In Sectioneébpresent our greedy algorithm
for the Hierarchical MCKP. In Section 6 we prove the guaradtealf-optimality of the greedy al-
gorithm’s solution. In Section 7 we present our predictiigrdwrchical level of detail optimization
algorithm. In Section 8 we discuss the limitations and atages of our algorithms. Finally in
Section 9 we offer some concluding remarks.

2 Background

Level of detail rendering is founded on the provision of ripi& drawable representations, or
impostors for scene objects at a range of detail levels [1]. Level dailéechniques have tra-
ditionally been used to reduce the complexity of renderangd hence improve frame rates, by
reducing the rendering of detail made invisible by perspegirojection. Funkhouser and Séquin
[3] were among the first to note that level of detail could bedusot only to opportunistically
reducethe complexity of rendering but also kit it entirely by actively selecting only as much
detail as there is time to render. They refer to thipeslictivelevel of detail optimization.
Funkhouser and Séquin note the equivalence of level ofldgiimization to theMultiple
Choice Knapsack Proble(WMCKP), a variation of the well-known NP-complete Knaps&ckb-
lem [6]. The Knapsack Problem models the general situatiavhich a cost-limited subset of a



set ofcandidate itemsvith variouscostsandprofitsmust be selected so as to maximize their total
profit. In MCKP the items are partitioned into various typesandidate subsetand exactly one
item must be selected from each type. The MCKP is defined s\l

Definition 1 The Multiple Choice Knapsack Problem
Given a setV of n candidate itemsa partition into disjointcandidate subsefsy, . .., N, of
the item sefV and aknapsackwith

p; = profitof itemj Q)
w; = costofitemj 2
¢ = capacityof the knapsack 3
maximize
z=)Y p;z; (4)
7=1
subject to
ijmj < ¢ 5)
7=1
ijzl V ke{l,...,r} (6)
JEN;
z; € {0,1} V j€EN (7)
N = {1,...,n}=J M (8)
k=1
assuming
NyoNN,=0V h#k. 9

The correspondence of MCKP to rendering is explained byngatinat in predictive level
of detail optimization a rendering-cost-limited subsetdfet of available object representations
must be selected so as to maximize their total perceptuafivewith the additional requirement
that exactly one representation must be selected for eathle/iobject. Funkhouser and Séquin
propose the use dfenefitand costheuristics that provide rough predictions of the perceptua
benefit (profit) and rendering cost (cost) of potential objepresentations.

Funkhouser and Séquin describe a greedy approximationitdm for MCKP which consid-
ers the candidate items in descending orderadfie(profit / cost), selecting each item if its selec-
tion can be afforded. If it occurs that the item under consitien belongs to the same candidate
subset as an item already in the knapsack, the algorithimsatdnichever item has greatprofit,
and discards the other [3]. The complexity of the algorited@ {r logn). Funkhouser and Séquin
claim that its solution is at least half-optimal in the wazase. However their algorithm is flawed
and its worst case solution is arbitrarily bad. Considerdbenterexample in which there are 7
items with profitgp = (10, 900,910, 10, 600, 10, 400) and costsw = (1, 100, 700, 1,500, 1, 400),

!Funkhouser and Séquin actually state that level of defihuzation is equivalent to th€ontinuous Multiple
Choice Knapsack Problena relaxation of MCKP in which items may be fractionally seél [6] [4]. In this sense
their algorithm is an algorithm for C(MCKP), rather than MEKHowever their algorithm never selects fractional
portions of items and is therefore just as much an algorithmMCKP. Moreover, in the level of detail optimization
problem posed by Funkhouser and Séquin there is no contegidering only part of an object representation.



partitioned intor = 3 candidate subsets. Candidate suldégtcontains items 1, 2 and 3y,
contains items 4 and 5, arfds contain items 6 and 7. The capacity of the knapsaek=s1000.
The solution reached by the algorithm in this instance is (0,0,1,1,0, 1, 0) with total profit
z9 = 930, while the optimal solutionig = (0,1, 0,0, 1,0, 1), with total profitz = 1900. There-
fore the algorithm’s solution to this instance is less thalf &s good as the optimal solutién.

Rather than perform a complete greedy approximation fon &aene, Funkhouser and Séquin
formulate an incremental level of detail optimization aig¢fum, based on their greedy algorithm,
that accepts as input an initial solution derived from thevpus frame. The complexity of the
incremental algorithm is stilD(n log n) in the worst case but the average case efficiency is
improved by exploiting frame-to-frame coherence.

A major limitation of the Funkhouser and Séquin algorithenttiat, being founded on the
MCKP, itis inherently non-hierarchical and is incapablele&ling with the shared representations
for groups of objects that characterize hierarchical lefeletail scene descriptions. Shared object
representations afford many benefits such as the abilitydwige coherent and consistent low
detail representations for groups of related objects aedatiditional savings in rendering and
optimization costs that this allows.

Maciel and Shirley [5] present a hierarchical predictiveeleof detail optimization algorithm
that is a hierarchical extension of the predictive approaicRunkhouser and Séquin. However
their algorithm represents a naive attempt to extend theadir flawed MCKP greedy algorithm
of Funkhouser and Séquin to the hierarchical level of defatimization problem, and provides
no guarantees of solution quality. Furthermore it is nocrémental and must perform a complete
greedy approximation for each frame.

Our level of detail algorithm represents both a correctibtine flaws afflicting the Funkhouser
and Séquin algorithm and a correct extension of their pted incremental approach to hierarch-
ical level of detail descriptions with shared object repraations. This paper is based in part on
[8], in which we describe an earlier algorithm for the samelgbem. Here we correct an error in
that algorithm’s detail selection heuristic that causeddlution to be less than half-optimal in the
worst case. In addition we provide a formal proof of the camess of our algorithm.

3 Hierarchical Level of Detail Description

In this section we present a formal definition of a generdlizeerarchical level of detail scene
description that will serve as the basis for the rest of thepaOur definition is general and makes
no assumptions about practical implementation. The chariaing feature of this description is
that multiple shared representations may be provided fougs of related scene objects. An
objectis defined recursively as consisting of other objects thatit children orparts. The
entire scene is represented by a hierarchy of such objeasevioot is called thecene object
Each object may optionally be provided with a setmmpostorsor drawable representations, that
represent it and therefore all of its parts. The leaf objeutist each be provided with at least one
impostor. Where multiple impostors are associated witimglsiobject, they are ordered uniquely
according to increasing detail. The impostors of the partsbfects together form more detailed
representations of those objects. Figure 1 shows an exarhpleimple level of detail hierarchy.

We define a formal hierarchical generalization of the cohadpa level of detail Objects
have multiple hierarchically defined levels of detail catisig of both their owrexplicitimpostor
representations and tivaplicit representations consisting of the combinations of the stgrs of
their descendants. Each level of detail corresponds toguerset of selected impostors:

ZNote that the counterexample is valid for C(MCKP) as wellcsi C(MCKP) is a relaxation of MCKP.
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Figure 1: A simple level of detail hierarchy. Objects are represented by cir-
cles, and their impostors by triangles. The multiple imposof each object are
shown in order of increasing detail from left to right. Impas are numbered for
convenience.

Definition 2 Level of Detail

A level of details of an objectO is a set of impostor§i,, s, t3,...,i,}. The impostors
i1, 142,13, - - -, in, are selected such that exactly one of the impostors on thefgah O to each of
the leaves of the subtree rooted@is an element of.

For example a valid level of detail of the scene object in Fégl is the set of impostors
{4, 6, 3}. This definition ensures that each level of detail of an dijjeavides some complete and
unambiguous representation of every part of that objecit twee of its associated impostors or a
subset of the impostors of its descendants. In additionctbjbat are parts of other objects may
also be represented by the impostors of their ancestors.

We define theeplacement seif an impostor to refer to the set of impostors that constitne
immediately higher detail representation of the object dwens that impostor:

Definition 3 Replacement Set
Thereplacement seif an impostot belonging to an objeadD is:

1. The immediately higher detail impostor®f if one exists.

2. The set of the lowest detail impostors of the nearest itonpo®aring descendants d@f,
otherwise.

For example the replacement set of impostor 2 in Figure {4j$,3}. The highest detall
impostors of leaf objects have no replacement sets. We dafiriecrementatiorof a level of
detail s of an objectO to be the replacement of some imposia s by its replacement seR.
Conversely alecrementatioof s is the replacement of some complete replacemenksets by
the impostot whose replacement seti& In general a level of detail may be incremented and
decremented in many different ways, where each correspntge replacement of a different
impostor or replacement set i The levels of detail of each object are partially orderedhsy
following relation:

Definition 4 Partial Ordering of Levels of Detail

Two levels of detai andt¢ of an objectO are related bys < t if there exist levels of detail
l1,15,15,...,1, such that; = s,[,, = t, andl;;, is the result of some incrementation/pfor all
i€{1,2,3,...,n—1}.



If s < tands # ¢ then we say that is astrictly lowerlevel of detail ofO thant. Thelowest
andhighestlevels of detail of an object are those such that there exisévels of detail that are
strictly lower and strictly higher, respectively.

Lastly we define two terms that reflect a partial ordering plaeement sets:

Definition 5 Ancestor Replacement Sets

We say that a replacement getis anancestor replacement satanother replacement sét
if there exists a (possibly empty) list of replacement &tsR,, R3, . . ., R, such thatR = R,
S = R,, andR;,, is the replacement set of some impostoRijrfor i € {1,2,3,...,n — 1}.

Definition 6 Descendant Replacement Sets
S is adescendant replacement séiR if R is anancestor replacement S#tS.

In the example shown in Figure {3,4,5} is a descendant replacement sef{ 2} and an
ancestor replacement set{f} and{7, 8}. Note that all replacement sets are trivially ancestors
and descendants of themselves.

4 Hierarchical Multiple Choice Knapsack Problem

In the hierarchical level of detail scene description defimeSection 3, each group (or non-leaf)
object is the union of its parts, or children. Therefore irsfoos of group objects are essentially
shared representations of all of the parts of those grougctdj By our definition they function as
lower detail representations of those parts than any ofrtipostors that are explicitly associated
with the parts themselves. We may therefore redraw the tuigyaequivalently by transforming
group object impostors into shared low-detail impostortheir children, as long as we note that
the shared impostors are constrained and must be seleaiagson for all of the parts, if at all. By
repeatedly applying this transformation we may create amptg” or flat hierarchy with impostors
only at the leaves (see Figure 2). Each leaf has as its imysoalioof its own impostors plus a
series of lower detail impostors inherited in top-down erfiem its ancestors in the hierarchy.
The equivalence is subject to a setoonstraints one for each original group impostor: the leaf
objects that share each inherited group impostost take on that shared impostor in unisde
resulting flat hierarchy is essentially a hierarchicallyswained non-hierarchical level of detall
description, exactly equivalent to the original hieragatiione. The immediately higher impostors
of the objects that share each inherited group impostothegeonstitute the replacement set of
that impostor.

We can now show that the hierarchical level of detail optation problem is equivalent to
a hierarchical generalization of the Multiple Choice KragsProblem, shown in Figure 3. In
this Hierarchical MCKP, the candidate subsets are not disjoint and some candigas are
shared between multiple candidate subsets. Each candiaaget corresponds to an object in the
constrained non-hierarchical description, and its caamidtems correspond to the impostors of
the object.

The definition of the Hierarchical MCKP is identical to thditke MCKP given in Section 2
except that the candidate subsets are not necessarilindigjme (9) is replaced with a stipulation
that theroot itemo € Ny, k =1, ..., r has areplacement sek, where the replacement set of an
item< is a set of itemsR; = {41, %2, %3, . . ., i5;} Such that:

1. For each candidate sub$ét of which+ is an element, there exists exactly one item R;
that is an element aWVy.
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Figure 2: Transformation of a simple level of detail hierarchy to its equivalent
constrained non-hierarchical description. The impostors of group objects have
all been transformed into shared impostors of the leaf abjedhe constraints
between shared impostors, shown as links, imply that theotdjvhich share those
impostors must take them on in unison.

2. Eachiteny € R; may or may not have a replacement set.

3. All replacement sets are mutually disjoint.

5 Greedy Algorithm for the Hierarchical MCKP

In this section we present our greedy algorithm for the Higvizal MCKP. The algorithm accepts
as input an instance of the Hierarchical MCKP and producesigmit a feasible solution to that
instance. The algorithm begins with the simplest feasiblaton and iteratively replaces items
with their replacements sets as far as the available colsalv. It maintains the feasibility of the
solution by always replacing an item with its complete replaent set and ensuring that replace-
ment sets are only considered for selection when the iteayséplace have already been selected.
It maximizes the quality of the solution by favouring, whewmeam the choice, replacements that
result in the greatest increase in profit for the smallesEase in cost. In order to determine the
most desirable replacements, the algorithm makes use ofigesselection heuristic based on a
metricrelative valuethat measures the profit density of replacement sets reladithe items that
they replace:

Definition 7 Relative Value
Therelative valueof the replacement sdét of an item: is measured with respect tocand is
defined as follows:

(EjeRPj) —Pi
(ZjeR wj) — w;

relative valu¢R) =
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Figure 3: The Hierarchical Multiple Choice Knapsack Problem. The items

correspond to the impostors of objects in the non-hieraathevel of detail de-
scription. They are divided into subsets correspondindpéoabjects to which the
impostors belong, and items that correspond to shared itofsogre members of
more than one subset. Only one item may be selected from easkts

The relative value of replacement deprovides a measure of the advantage gained by using it to
replace the item that it replaces, measured as the ratio of the differencéstah profit and cost
between the replacement deiand the replaced item

The algorithm maintains a list of replacement sets curyeaailable for selection, ordered by
descending relative value. It initially selects the imagynroot item (See Section 4) that has no
profit and cost and is an element of every candidate subsginaerts into the replacement set
list the replacement set of this item. It then greedily cdass the remaining replacement sets in
order of descending relative value, using the replacemariist to ensure that each replacement
set is only considered after the item it replaces has beeotsel. While the replacement set list is
not empty, the algorithm considers the first replacemeringée list for replacement, substituting
it for the item it replaces if this replacement can be affardéf the replacement is made then
the replacement set is removed from the replacement sainisthe replacement sets (if any) of
the items it contains are inserted into the list in descapdaative value order. Otherwise the
replacement set is simply removed from the list and disahréfet is the first replacement set to
be so discarded it is marked as tréical replacement setAt any stage the replacement sets that
are available in the replacement set list are those whoseiassd items are currently selected,
and they are considered in descending order of relativesvalu

When this greedy selection terminates (due to the replaceseelist being found to be empty)
the solution reached is compared against the lowest casibleasolution containing the critical
replacement set. If thiitical replacement set solutidras greater profit than the greedy selection
and has total cost less than or equal to the size of the knlafisacit is selected instead.

Finding the critical replacement setis simple: it is fous@dy-product of the greedy selection
stage. Finding the critical replacement set solution h@vesquires an iterative selection process
similar to the greedy selection stage but taking no noticeslaitive value orderings and instead
selecting only replacement sets that represent candidatets that are also represented by the
critical replacement set.



6 Proof of Half-Optimality

In this section we prove the half-optimality of the greedgaalthm described in Section 5. Our
algorithm’s solution is at least half-optimal for instasa# the Hierarchical MCKP in which the
replacement set of an item always lgasater total cost and profthan that item antbwer relative
valuethan all of its ancestors (if any). This implies that more exgive selections should always
providediminishing returnsWe assume here that those requirements are satisfied.

The approach taken in the proof is to formulate an expregsiating the profit of the optimal
solution to the profit of the intermediate solution reachgdtie greedy algorithm immediately
before the consideration and rejection of the critical aepinent set. At that point we know, by
virtue of the selection heuristic and the diminishing ragiassumption (Section 5), that all of the
replacement sets selected have greater relative valughbaa not selected. Using this we show
that the maximum error of the algorithm is bounded by the puadfthe critical replacement set.
Recalling that the algorithm also considers the criticplaeement set solution, we deduce that
the algorithm’s solution is at least half-optimal.

Given an instance of the Hierarchical MCKP, let the profitla# bptimal solution to this in-
stance be. LetG be the set of items in the intermediate solution reached &gibedy algorithm
immediately before the critical replacement set is considéand rejected), and le? = ;.o ps
be the profit of this intermediate greedy solution.

Therefore
2=29 4> (D] p) —pry) = D (O i) — pr;) (10)
JEA i€R; jEB icR;

wherer; is the item whose replacement setRg, A is the set of replacement sets that would
be selected in the process of selecting the optimal solbtibmvere not selected in the process of
selectingZ (those where the algorithm has “underselected”), Bnislthe set of those replacement
sets that were selected in the process of seleéitgit would not be selected in the selection of
the optimal solution (where the algorithm has “overselédte

In this step we consider the replacement sets that afe When the critical replacement set
S was considered (and rejected) the set of currently selétgets was exactlyz. Therefore the
critical replacement set was considered as the replaceimesbme itemt that is an element of
G, and was considered instead of some replacemeint et is the replacement set of some item
v € G and is an ancestor replacement sekef This implies thal” has lower relative value (with
respect ta) than$ (with respect ta):

(ZieVpi) — Pv < (Ziespz’) — Dt
Ciev wi) —wy — (Pieswi) — we
Now because the replacement sets of items always have lelagive value than the replacement

sets containing those items (by assumption), all of theamsphent sets il must have lower
relative value thaty'

(ZieR]- Pi) — Pr; < (>iespi) — pt

vV jeA. 11
(Z"GRJ w;) — Wr; (Zies w;) — wy 7€ (11)

In this step we consider the replacement sets that aB iWhen the critical replacement set
S was considered for selection (and rejected) the set of tiyreelected items was exactily.

3In practice the algorithm may also select other later regriaent sets, replacing items@h but since every replace-
ment increases the total profit of the selected items (byragan), we know that the profit of the final greedy solution
is greater than or equal tg,.



There must therefore exist a list of replacement detds, Js, . . ., J, suchthat/; = R;, J, C G,
andJ;, is the replacement set of some item/ifor allof ¢ = 1,2,3,...,z — 1.

Likewise there also exists a list of replacement gefts M, M3, . .., M, whereM; is the
replacement set of some item in the cheapest feasibleso)fi, = S andM;; the replacement
set of some itemmn; in M; forallof ¢ = 1,2,3,...,y — 2. Note thatM, is not selected as the
replacement for some item i, , becausé, (ie. S) is not selected at all.

Then we know that the algorithm at some stage replaced samnejjt | in J,_; with J,
instead of replacing some item,, in M,, with M, 1, forsomeu € {1,2,3, ...,y — 1}, sinceJ,
was selected anfl was not. Therefore

(Ziejz Pi) = Pi_y > (ZieMuJrl Pi) — Pm,
(ZZEJZ wz) - wjz—l o (ZiEMu+1 wz) - wmu
Now because the replacement sets of items always have lelagive value than the replacement

sets containing those items (by assumption), all of theaghent sets i must have greater
relative value thaty'

(Xier, Pi) — Pr; > (Xicspi) — pt
(ZiGR]- w;) — Wy, (Pies wi) — wy

Therefore, from (10), (11) and (12) we have
z < 2+ (O] wi) - w”)M ST w) - w”)w

jeA iR, Diesws) —we  J5icE, (Xieswi) — we

V jeB. (12)

< | w) - wn) - DU w) - wy) | (SSELZEL g

JEA icR; jEB icR; (Lies wi) — we

Lete = ¢ — > ;cq w; be the space left in the knapsack after the selectiai,ammediately
before the rejection of the critical replacement Set~rom the fact thaf was rejected we know
that the difference in cost betwe&randt is greater tham:

t < O wi)—w. (14)
=
Furthermore we know that the total difference in cost betwibe optimal solution and the inter-
mediate greedy solutiad must be less than or equaldo

DD wi) —we) = D (D wi) —wry) <
jEA icR; j€B i€R;
Therefore, from (14),
SO w) —we)) = Y (D w) —wyy) < O wi) —wy (15)
JEA 1€R; JjEB i€R; €S
and so, from (13) and (15),

ol

(Zies Pz’) — Dt

z < 294 ((sz) — wy) ecs wi) —w (16)
€S €5 T ¢
< 2400 p) - 17)
icS
< 224 pi (18)
icS



Recall that the greedy algorithm compares the total profiheffinal greedy solution (which
is greater than or equal &f) to the total profitz® of the cheapest solution containing the critical
item, and keeps whichever solution is better. That is, tigerithm’s solution has profit® >
max(z?, z*). Clearlyz® > 3 ;cg pi, S02" > max(29, 3;c s p;). Therefore, from (18),

1
> 22
- 2
and the profit of the algorithm’s solution is guaranteed t@bkeast half the profit of the optimal
solution.

7 Hierarchical Level of Detail Optimization Algorithm

Ourincremental hierarchical level of detail optimizatedgorithm, shown in Figure 4, is an equiv-
alent incremental version of the Hierarchical MCKP greelgypdthm described in Section 5. Its
advantage over that algorithm is purely one of efficiencgxjtloits frame-to-frame coherence by
basing its initial solution on the solution found for the yirus frame.

begin
setL <+ the initial solution
setdone+ FALSE
while done = FALSE{
/lincrementL, if we can
if L is not the highest level of detaten {
find ¢, the impostor inL whose replacement set has highest relative value
setR «+ the replacement set of
setL <+ (L - {i})UR

}
/l decrement, while the total rendering cost is too high
while 37; ., Cos{() > rendering cost limif
find S C L, the replacement set i with the lowest relative value
setj « the impostor whose replacement sefis
setL + (L - S)U{j}
if S = R then setdone+ TRUE

end

Figure 4:The incremental hierarchical level of detail optimizationalgorithm.

The algorithmis applied once per frame and its output is el leidetail of the scene object for
that frame. Its input is the level of detail selected for thevipus framé and a constamendering
cost limitthat represents the rendering time available for this frahfe algorithm guarantees that
the total predicted rendering cost of the selected leveletéitiis lower than the rendering cost
limit. In addition it attempts to maximize the total predidtperceptual benefit (or profit) of the
selection.

*Or any valid level of detall, in the case of the first frame.

10



The algorithm is iterative, repeatedly incrementing ancrémenting the selected level of de-
tail until the final solution is found. In each iteration thelected level of detail is incremented
once, then decremented repeatedly while the total rengledst is greater than the rendering cost
limit. Recall that a level of detail may in general be increresl and decremented in many dif-
ferent ways. The incrementation selected in each steptisvtiiah replaces the currently selected
impostor whoseeplacement sehas thehighest relative value Conversely the decrementation
selected is that which deselects therently completely selectedplacement set with tHewest
relative value

The repeated iteration terminates when the incrementatioindecrementation operations of
the same iteration select and deselect the same replacasetentVhen this occurs there is no
further work for the algorithm to do. After termination ofetalgorithm we render the impostors
constituting the selected level of detail. Note that th@atgm as described does not consider the
critical replacement set solution (Section 5). The crltreplacement set is that which is both se-
lected and deselected in the final iteration of the algoritHimwever we feel that in practical level
of detail situations the pathology in which the critical legement set contributes significantly to
the final solution is unlikely to arise.

The incremental algorithm is equivalent to the originaleghg algorithm as long as the dimin-
ishing returns assumption holds (see Section 5). Noteltleahtrementation operation is identical
to the selection heuristic of the greedy algorithm. Decretakéon is the inverse of incrementation.

8 Discussion

Note that the maximum error of the greedy algorithm is bouhlole the difference in profit be-
tween the critical replacement set and the item it replasee équation (17)). Therefore as the
granularity of the candidate items with respect to the kaak$ecomes finer, the maximum er-
ror of the algorithm tends to zero. In practical level of desgplications the performance of the
algorithm can be expected to be much better than half-opfima

Recall that the algorithm depends on the diminishing retassumption for its half-optimality.
This assumption implies that higher detail representatmfrobjects must provide increased per-
ceptual benefit at the expense of increased rendering ctisgliminishing returns for increasingly
more detailed representations. These requirements ailg tixbe satisfied in most real-world ap-
plications. Level of detail problems in which more expepsignderings do not provide diminish-
ing returns are uncommon. For example the successive additinore detail to a polygonal mesh
model generally results in progressively smaller improgats in visual perception. Therefore the
algorithm can be expected to perform well in most practieaél of detail applications.

The complexity of the greedy algorithm @(n log n). The number of replacements made
is O(n) in the number of candidate items (and hence in the numberptdcement sets). Each
replacement involves the deletion of the replacement dbediead of the list, which i©(1), and
the in-order insertion of (we assum@) 1) new replacement sets, each at the expené¥loig »)
complexity. The complexity of the greedy selection stagkaseforeO (n logn). After the greedy
selection stage the critical item solution must be founde @dmplexity of this i€)(n). The entire
algorithm is therefor®(n log n).

The worst-case complexity of the incremental algorithmlgs @ (n log n). However by
exploiting frame-to-frame coherence it generally avoidg@ming a full computation for every
frame and instead only computes the difference between feacie and the last. Therefore its

® A similar observation is made for other Knapsack Problenristics in [2].
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average case complexity is significantly lower and its basedsO(1). In [9] we present an
experimental evaluation of the algorithm that suggest&viésage complexity is closer to O(n).

9 Conclusion

We have presented a predictive hierarchical level of defatiimization algorithm. Our algorithm
is truly hierarchical and allows the use of hierarchicalreceescriptions with shared represen-
tations for groups of objects. The benefits of this are thastent and coherent shared repre-
sentations may be provided for groups of related objecténgaendering and optimization costs
and preserving the completeness of the scene represengago in demanding rendering situa-
tions. Because of its predictive nature our algorithm got@s constant frame rendering times
by ensuring that the predicted rendering cost of the sedesitene representation is always lower
than the available rendering time. Furthermore it activayimizes the perceptual benefit of the
selected scene representation and its solution has geadil@vels of predicted perceptual qual-
ity. By virtue of this we correct problems with previous aitgbms that caused their solutions to
be arbitrarily bad. Lastly our algorithm is incremental asalexploits frame-to-frame coherence
for improved efficiency by basing its initial solution on thgproximate solution found for the
previous frame.
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